8.1.3 Example

Here we show an example of writing general [Jij using the extended type rule.

As an example, a customer may have different kinds of accounts. In the example below we add a
SavingsAccount and a CreditAccount to JohnSmithProfile. We also add a method
totalBalance to Customer - this method computes the sum of the balance of all accounts of a
given customer.

class Customer

totalBalance -> bal: var float:
accounts.scan
bal := current.balance

JohnSmithsProfile: obj Customer("John Smith")
anAccount: ref Account

anAccount := SavingsAccount(JohnSmithProfile)
JohnSmitProfile.addAccount(anAccount)
anAccount.deposit(300)

aCreditAccount: ref CreditAccount

aCreditAccount := CreditAccount(JohnSmithProfile)
JohnSmitProfile.addAccount(aCreditAccount)
aCreditAccount.maxCredit := 999

console.print("Total balance sum: " + JohnSmithProfile.totalBalance

Here we see examples of assigning a reference to an object to a variable of a more general type. One
example is:

anAccount := SavingsAccount(JohnSmithProfile)

The expression SavingsAccount (JohnSmithProfile) generates an object of type
SavingsAccount - the reference to this object is then assigned to anAccount which has the more
general type Account.

Another example is:
JohnSmitProfile.addAccount(aCreditAccount)

Here a reference variable of type CreditAccount is assigned to the parameter of addAccount,
which is of type Account.

The example also shows that it is possible to write code that works for all kinds of Account objects.
This is the case for the method addAccount that adds the Account being passed as argument to
the accounts array of the Customer object.

Another example is the new method totalBalance, which has the statement:

accounts.scan
bal := current.balance


https://oopm.org/?page_id=7757

This statement scans through all objects in the accounts array - current refers to the current
Account object, and the type of current is Account. The expression current.balance access
the balance attribute of the account object bering referred to by current. This works since all
objects in accounts have a balance attribute independently of being an instance of Account,
SavingsAccount or CreditAccount.

Consider the statement
aCreditAccount.maxCredit := 999

Here the attribute maxCredit is accessed. This is possible since aCreditAccount is of type
CreditAccount and thus must refer to an object of type CreditAccount.

If we had used the variable anAccount instead (as we did for generating the SavingsAccount), we
cannot access the attribute maxCredit since only CreditAccounts has this attribute.

In section on virtual methods, we show how to write general code that depends on objects that are
instances of different subclasses.



