
OLD-The bank account example

Description

Text from OO-lec-v6-figures-ok, which is in the DropBox Papers folder.

In this Section, we will try to envision how a computer may be used to support a simple administrative system from the real
world using objects. As an example, we will use a bank.

1 Before computers
We will first describe how a bank might be organized before computers were invented. The bank has a number of
customers. A customer may borrow money from the bank or deposit money in the bank. The bank keeps information about
each customer in the form of an account that keeps track of the current balance for the customer. A bank clerk will have to
be able to perform the following tasks:

When a customer enters the bank, the clerk must be able to find the account of the customer.
For a new customer, the clerk must be able to create a new account.
The clerk must be able to receive money from the customer for deposit on his/her account.
The clerk must be able to give money to the customer by withdrawing money from his/her account.
The customer should also be able to loan money to the customer.

For each customer the bank keeps an account in the form of a file that consists of one or more pieces of paper. A piece of
paper may have the format as shown in Figure 2.1, which shows three accounts.

Figure 2.1 Example of paper-based accounts

The information in an account is the name of the owner of the account and the current balance of the account. One of the
accounts is owned by John Smith and has a current balance of 580.

In this very simple example, we only have one type of account. If the balance on the account is positive, we assume that the
customer has put money in the bank. If the balance is negative, we assume that the customer has borrowed money from
the bank. As can be seen, Tina Turner has borrowed an amount of 1420.

The bank has an account for each customer, and all the accounts are kept in a cabin where there is a folder per account.

When a customer visits the bank and asks for service, a bank clerk finds his/her account in the cabin and performs the
desired transaction (deposit or withdrawal) by changing the balance field.

If a new customer wants to use the bank, the clerk will have to create a new account. For this purpose, the bank has
preprinted paper where the clerk may fill in the details of the customer, such as name of the owner, and the current balance.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 1
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

We have of course made a number of simplifications compared to a real bank. In a real bank, there are many different types
of accounts, such as saving accounts and check accounts. In addition, a record is kept for each transaction that has been
made on a given account.

2 Bank with IT-support
Suppose the bank wants to handle its accounts using a computer. In order to do this, we must be able to represent the
accounts in the computer. In addition, we must be able to view an account on a screen and modify the account using
keyboard and mouse.

To represent an account in a computer, we use an object. An object is an entity that exists inside a computer – it may be
used to keep all the information we need for an account. In addition, we may change the information stored in an object
when transactions are performed on the account.

To be able to view and modify an account we must be able to display it on a screen and to enter information about
transactions (deposits and withdrawals). To do this we must design and implement a user interface for a bank-system.

The paper-based account has the advantage that it is immediately readable and modifiable by the bank-clerk and when a
transaction is performed, it is easy to update the balance field. For a computer-based system, we will have to split the paper-
based account into two parts: an object, which represents the information on the account and a user interface for
presentation and modification by the bank clerk. The user-interface may e.g. be a window on the screen. This is illustrated
by in Figure 3.1.

Figure 3.1

2.1 Creating objects representing accounts

We will start by showing how to create objects that can represent accounts. In order to this, we will have to define a
template for creating objects representing accounts. A template describes the structure of an object in terms of the
elements of the object. The programming language construct for defining such an object-template is called a class. An
object created from a class consists of data-items and methods. A class for defining accounts may be defined as shown in
Figure 3.2.

Figure 3.2

As mentioned, a class like Account defines a template for creating Account-objects. An Account-object has two data-
items: owner and balance. The data-item owner is supposed to represent the name of the owner of the account. The
data-item balance is supposed to represent the current balance of the account. During execution of the program, the value
of balance may change when money is deposited or withdrawed from the account. The value of the owner may change if
the account gets a new owner or the owner changes his name.

An Account-object also has three methods: setOwner, deposit, and withdraw. A method contains code that when executed
may return data about the Account-object and/or modify the data-items of the Account-object. The method setOwner is
supposed to represent and execute the action performed by a bank clerk when he/she needs to set the name of the owner.
Similarly the methods deposit and withdraw are supposed to represent and execute the actions performed by the client
when money is deposited or withdrawed respectively from the account.

In the following, we will describe in further detail the meaning of the constructs, class, data-item and method.

1.1 The class construct

As mentioned, a class is a template for creating objects. An object consists of the following elements:

A set of data-items – also called instance variables, or just variables. A data-item is a container that may hold values.
A value may be an integer value, like 5, 123, or –99.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 2
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

A set of methods – also called member functions. A method contains code that may be executed.

As mentioned, a class is a template for creating objects. A class definition contains a description of the data-items and
methods that are present in the objects created from the class. A class declaration may have the following form:

 class Account extends Object
 {
 “declaration of data-items and methods
 }

The important elements of this declaration are:

The keyword class signals that a class is defined
The name Account following class defines that the name of the class is Account
The phrase extends Object will be ignored for the moment
The braces { and } encapsulates the body of the class. The body contains declarations of data-items and methods.

1.1.1 Data-items

The following declaration is an example of a declaration of a of data-item:

 int balance = 0;

This declaration states that objects created from the class will contain a data-item with the following properties:

The name of the data-item is balance.
The type of the data-item is int. The type of a data-item describes which values that can be stored in the data-item.
The initial value of the data-item is zero (0).

The following declaration is also an example of a declaration of a data-item:

 String owner;

Objects created from the class will have a data-item with the following properties:

The name of the data-item is owner.
The type of the data-item is string. The type String contains values that are sequences of characters. Examples of
characters are “a”, “2”, “*”, etc. Notice that characters are written enclosed in quotes (“). Also note, that there is a
difference between the number 2 and the character “2”. As mentioned, a string is a sequence of characters.
Examples of string-values are: “John Smith”, and “LisaNelson@imv.au.dk”.
No initial value is defined for owner.

A data-item is often called an instance-variable or just variable.

1.1.2 Methods

The following declaration is an example of a method declaration:

 void setOwner(String N)
 { owner = N; }

Objects created by from the class will have a method that has the following properties:

The name of the method is setOwner.
The method has one argument (String N). An argument is similar to a data-item in the sense that it holds a value.
The value of the argument is defined when the method is activated (see below). The value of the argument may be
used in the body (see below) of the method.
A method may compute a value that is returned to the caller (see below) of the method. The setOwner-method
returns no value to the caller – indicated by the return type void. In a later section, we will give examples of methods

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 3
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

mailto:LisaNelson@imv.au.dk

that return a value.
The body of the method is { owner = N; }. In general, the body of a method may contain declarations of data-items
and statements.
A statement defines an action that when executed may have an effect on one or more data-items. The body of
setOwner consist of one statement

The effect of executing this statement is that the data-item owner will be given the value of the data-item (argument) N of
setOwner. The variable owner is said to be assigned the value of N. A statement of this form is called an assignment-
statement. Below we will explain assignment-statements in more details and introduce a number of other kinds of
statements.

 owner = N;

A method may be invoked (or called) from another method. When a method is invoked, its arguments are given values, the
code in the body of the method is executed and a possible return value is computed and returned to the caller of the
method. We will explain this in further detail below.

1.2 Using class Account

The class Account may be used in other methods to create and manipulate Account-objects. In the following, we will show
examples of using class Account.

1.2.1 Creating Account-objects

A class is a template for creating new objects. Execution of an expression of the form

 new Account()

will result in the creation of a new Account-object.

1.2.2 Account-variables

The data-items balance and owner declared in class Account may hold values of type int or String respectively. A data-item
may also hold a value that is a reference to an object. A declaration of the form:

 Account JS;

declares JS to be a data-item that may refer to Account-objects. The data-item JS may be assigned a value by a statement
like

 JS = new Account()

The expression new Account() generates a new Account-object from the template defined by class Account. A reference to
this new object is then assigned to the data-item JS.

Figure 3.4

A reference is a value that refers to an object: it uniquely identifies the object and it can be used to access the object by
invoking its methods, reading the values of its data-items and/or assigning new values to its data-items. The term pointer is
often used interchangeably with reference. In diagrams, a reference is often illustrated by an arrow for the data-item to the
object. In Figure 3.4 is showed an object X with a data-item JS declared as Account JS, referring an Account-object.

1.1.1 Method invocation

We will now introduce a new form of statement, a method invocation. A method invocation invokes a method on an object.
The following statement is an example of a method invocation:

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 4
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

 JS.setOwner(“John Smith”);

The effect of this statement is that the method setOwner is invoked on the object JS. The argument N of setOwner is given
the value “John Smith”. When setOwner is executed, this will then have the effect that the owner data-item of JS will be
assigned the value “John Smith”.

Figure 3.5

The details of a method-call are shown in the diagram of Figure 3.5. The diagram consist of three rows marked 1, 2, and 3,
and two columns marked a and b. The rows 1, 2, and 3 mark different points of time. The columns a and b shows two
items that are of interest when illustrating the effect of the method call.

The item in column (b) is an Account-object labeled JS. The item in column (a) is a so-called method-activation (or just
activation) corresponding to the call of setOwner. An activation is similar to an object in the sense that it consists of data-
items, including arguments. The activation of setOwner contains a data-item N, which is given the value “John Smith”. In
addition, the activation contains a data-item called this. The data-item this is a reference to the object on which the method
is invoked. Since setOwner is invoked on the Account-object JS, the data-item this is assigned a reference to the object JS.
This is illustrated by the arrow from this to JS.

We may now explain the Figure 3.5in detail:

1. At time 1, the only item in existence is the Account-object JS in column (b) exists. The value of owner is “John
Dowe” and the value of balance is 180.

2. At time 2, the method-call JS.setOwner(“John Smith”) is executed – at this point we do not care about who
and where this method call is executed.
To handle the method call, the method-activation in column (a) is generated with the argument N assigned the value
“John Smith” and this assigned a reference to the object JS.

3. At time 3, the statement owner = N in the body of setOwner is executed. We mark this by an arrow from the lifeline
of the setOwner-activation to the object JS.
The result of this action is that the variable owner in JS has been assigned the value “John Smith”. This illustrated by
redrawing the object JS in column (b). As can be seen owner has been changed but balance remains unchanged.

1.1.1 Statement sequence

Until now, we have seen two kinds of statements: assignment statements and method invocations. It is possible combine a
sequence of statements and form a statement sequence. The following is an example of statement sequence:

 JS = new Account();
 JS.setOwner(“John Smith”);
 JS.deposit(200);
 JS.withdraw(75);

When a statement sequence is executed, the individual statements are executed in the order they appear in the sequence.
We will elaborate on this below.

1.2 Putting it all together

A method consists of a number of declarations and a sequence of statements (statement sequence). The method main
below includes a declaration of an Account-variable, generates a new Account-object and performs three method
invocations on the Account-object:

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 5
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

static void main(String args[])
{ Account JS;
 JS = new Account();
 JS.setOwner(“John Smith”);
 JS.deposit(200);
 JS.withdraw(75);
}

The main-method differs from the previously defined methods setOwner, deposit and withdraw in two ways:

The keyword static declares that the method is class method. A non-class method belongs to an object and can only
be executed by invoking it on an object. A class method exists independently of any object and may be thought of as
belonging to a class. We can thus execute main without any object.
The name main is special. Java program consists of one or more classes. One of these classes must define a class
method called main. When the program is executed, execution starts by invoking the main-method.
The method main has an argument args of type array of String. We explain the details of args below.

We will later elaborate on the concept of class methods, including the method main.

In Figure 3.6, we have extended class Account from Figure 3.2 with the above main-method.

 class Account extends Object {
 String owner;
 int balance = 0;

 void setOwner(String N)
 { owner = N; };

 void deposit(int amount)
 { balance += amount; };

 void withdraw(int amount)
 { balance -= amount;}

 static void main(String args[])
 { Account JS;
 JS = new Account();
 JS.setOwner(“John Smith”);
 JS.deposit(200);
 JS.withdraw(75);
 }
 }

The class Account in Figure 3.6 may be compiled and executed. During execution the following happens:

1. Execution starts be invocation of the method main.
2. Execution of main consists of execution of the following statements:
3. A new Account-object is created and assigned to JS.
4. The method setOwner with argument “John Smith” is invoked on the object JS.
5. The method deposit is invoked with argument 200 on JS.
6. The method withdraw is invoked with argument 75 on JS. At this point the object JS has the state shown in Figure

3.3.

In the next section, we will explain the execution of Account in further details.

1.1 Sequence diagrams

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 6
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

To illustrate the effect of actions executed by a Java program, we will use a diagrammatic notation called sequence-
diagrams. A sequence may be used to show the life cycle of one or more items during the execution of part of a program. In
Figure 3.5 above, we have already seen an example of a sequence diagram.

For most programs, a large number of items are generated execution of the program. The most common examples of items
are objects, method-invocations, classes and methods. In most cases, we will only show objects and method-activations on
the diagrams. The life cycle of the Account-object may be illustrated by the sequence diagram in Figure 3.7.

Figure 3.7

In a sequence diagram, an item is shown as a box at the top of a vertical line. The diagram in Figure 3.7 has six items:

1. The Java-item in column (a) represents the Java-system of the computer.
2. The item in column (b) represents an activation of the main-method.
3. Column (c) shows three items representing activations of setOwner, deposit, and withdraw.
4. Column (d) represents an Account-object labeled JS.

The vertical line below a box is called the item’s lifeline. The lifeline represents the life of the item during program execution.

A box shows the state of the item at a given point in time during execution of the program. The state of an item represents
the information held in the item at the given point in time. For an object or method-activation, the values of the data-items
are included in the state.

An item may be shown several times along its lifeline. This is done to show how the state of the item may change during the
life cycle of the item. Even if the Account-object JS is drawn four times in column (d) in Figure 3.7, there is only one
Account-object in this example. A box showing the state of the Account-object is often called a snapshot of the state of the
object.

An arrow between the lifelines of two items represents an action invoked by one of the items and executed by the other
item. The item at the start of the arrow is the invoker and the item at the end of the item is the receiver.

An item may be shown several times on its lifeline to illustrate that the values of its instance variables may have changed as
the effect of a method-call.

In Figure 3.8 is shown the elements of a sequence diagram:

An object and its lifeline.
Two action arrows.
An activation box.

Figure 3.8

An action like new Account() results in the creation of a new Account-object. To illustrate that a new Account-object is
created, the arrow points to the box of the object being created. This is shown in part (a) of Figure 3.9. In this way, the
diagram illustrates that the life cycle of a new Account-objects starts by the execution of new Account().

Figure 3.9

In part (b) of Figure 3.9, part of the life cycle of the Account-object is shown. Initially the variables name and balance of the
Account-object has the values undefined and 0 respectively. The action owner=“John Smith” is then executed. During
execution of this action, the Account-object is active as shown by the activation box below the arrow. After execution of
owner=“John Smith”, the variable owner has the value “John Smith”.

We may now explain the details of Figure 3.7 – The numbers in the list below refers to the numbers of the rows in the figure:

1. At the start of the scenario, only the Java-item representing the Java-system on the computer exists.
2. The user then executes the Java-program illustrated by the arrow labeled Account.java. This implies that the Java-

system invokes the main-method resulting in creation of the main-activation shown in column (b).

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 7
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

3. The action JS=new Account() is then invoked by the main-activation. The result is creation of the Account-object JS
in column (d). For the Account-object, the value of owner is undefined and the value of balance is zero (0). In
addition, the data-item JS in main-activation is assigned a reference to the new Account-object. This is illustrated by
the new snapshot of main following row 3.

4. The main-activation then executes the method invocation JS.SetOwner(“John Smith”). This implies that an activation
of setOwner is created as shown in column (c). The argument N has assigned the value “John Smith” and the this-
reference refers to the Account-object. The setOwner-activation then becomes active and starts executing the
statements in its body.

5. The body setOwner consists of only one statement owner = N. Execution of this statement implies that the owner
data-item of the Account-object is assigned the value N, which is “John Smith”.

6. The main-activation then executes the method invocation JS.desposit(200). This implies that an activation of deposit
is created as shown in column (c). The argument amount has been assigned the value 200 and this has been
assigned a reference to the Account-object. The deposit-activation then becomes active and starts execution of the
statements in its body.

7. The deposit-activation executes the statement balance += amount which implies that the value of balance in the
Account-object is incremented by 200. The result is that the value of balance becomes 200.

8. Finally, main-activation executes JS.withDraw(75): An activation of withdraw is created with deposit assigned the
value 75 and this assigned a reference to the Account-object.

9. The withdraw-activation executes the statement balance -= amount which implies that the value of balance in the
Account-object becomes 125.

10. At this point, the execution of the program is finished – the program is said to terminate.

1 Creating several accounts
In the previous section, we have shown how to define a Java-program that defines class Account with a main-method that
creates just one Account-object. On e of the advantages of a class is that it can be used for creating several objects. In this
section, we will show an example that creates more than one instance of class Account. We will also show how to make a
Java-program that makes use of two classes.

We will define class Bank that creates three Account-objects. For simplicity, we have assumed that the bank has just three
customers. In Figure 4.1 we define a class Bank that has three Account-objects, JS, LJ, and TT and a static main-method.
When main is executed, it creates the three accounts.

public class Bank extends Object
{ public static void main(String args[])
 { Account JS,LJ,TT; // variables to hold 3 accounts
 // create the account for John Smith and deposit 100
 JS = new Account();
 JS.setOwner(“John Smith”);
 JS.deposit(100);
 // create the account for Lisa Jones and deposit 200
 LJ = new Account();
 LJ.setOwner(“Lisa Jones”);
 LJ.deposit(200);
 // create the account for Tina Turner and deposit 50
 TT = new Account();
 TT.setOwner(“Tina Turner”);
 TT.deposit(50);
 }
}

Figure 4.1. Class Bank defining three Account-objects.

The Bank-class makes use of the Account-class defined in Figure 3.2[1].

We may now compile and execute Bank.java. When Bank.java is executed, the first thing that happens is that method main

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 8
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

https://olmadsen.dk/?page_id=1147#_ftn1

is executed and an activation for main is created.

For this example, the main-activation has data-items corresponding to args, JS, LJ and TT.

[1] At this point, we have not discussed how to organize class-definitions on a computer. Usually a class is stored in a file.
For a class to use another class, there are some rules that must be followed. This is an issue we will return to later,

We may now compile and execute Bank.java. When Bank.java is executed, the first thing that happens is that method main
is executed and an activation for main is created.

For this example, the main-activation has data-items corresponding to args, JS, LJ and TT.

When the main-activation has been created, the statements in the body of main are executed. Execution of theses
statements will result in the creation of three Account-objects. For each Account-object, the name of the owner is set by
execution of the method setOwner(). In addition, some money is deposited on each account by execution of the method
deposit().

Just after the final statement (TT.deposit(50)) in main has been executed, the state of execution may be illustrated by
Figure 4.3

Figure 4.3

In the following, we will describe step-by-step what happens during execution of Bank.java. The state of execution is
illustrated by the diagram shown in Figure 4.4. The labels in the leftmost column of Figure 4.4, refers to the items in the
numbered list below:

1. The user executes Bank.main().
2. The method main defined in class Bank is executed. This happens in two steps:

A method-activation for main is created. This main-activation has data-members corresponding to args, JM,
LJ and TT.
The statements defined in the body of main() are executed. The execution thus continues along the lifeline for
the main-activation.

3. The main-activation executes JS = new Account();
The expression new Account() implies that a new object is created from the template defined by class Account. The
new Account-object is shown in column d. The instance variable JM in the Bank-object is assigned a reference to the
new Account-object. That is JM refers to the new Account-object. This is illustrated by the new drawing of main-
activation after row 3.

4. The main-activation executes JM.setOwner(“John Smith”).
The method setOwner is executed (invoked) on the object JM with argument “John Smith”. This implies that the
body of the method setOwner defined in class Account (line xxx) is executed. The argument N of setOwner has the
value “John Smith”.
Execution of the statement name = N; implies that the instance variable name of the Account is assigned the value of
N. I.e. name is assigned the value “John Smith”. This is illustrated by the new drawing of the Account-object in
column c.The main-activation executes JM.deposit(100).

5. The method deposit is executed on the object JM with argument 100. This implies that the body of deposit is
executed. The argument amount of deposit has the value 100.

6. Execution of balance += amount; implies that the instance variable balance is incremented with the value of amount.
Since balance was 0 (zero) before the statement was executed, the value of balance is 100 after the statement has
been executed. This is illustrated by the new drawing of the Account-object in column d.

7. LJ = new Account();
An instance (object) of class Account is generated and a reference to the new Account is assigned to the variable LJ.

8. LJ.setOwner(“Lisa Jones”);
The method setOwner of LJ is executed with the argument “Lisa Jones”. The result is that the instance variable
name of LJ is assigned the value “Lisa Jones”.

9. LJ.deposit(200);
The method deposit of LJ is executed with the argument 200. The result is that the instance variable balance of LJ
gets the value 200.

10. TT = new Account();

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 9
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

https://olmadsen.dk/?page_id=1147#_ftnref1

A new Account-object is generated and assigned to TT.
11. TT.setOwner(“Tina Turner”);

The instance variable TT.name gets the value “Tina Turner”.
12. TT.deposit(50);

The instance variable TT.balance gets the value 50.

Figure 4.4

The Java code in class Account and class Bank is not in itself very useful. We need to extend the example to be able to do
something interesting, such as performing transactions on the accounts. To do this we will also have to implement a user
interface. Therefore, we have a long way to go!

Summary of concepts
Incomplete

In this section, a summary of central constructs in object-oriented programming and Java are given.

1.1 Object

An object is an entity that exists in the memory of a computer. An object may be used to store data about a given
phenomenon. Data stored in an object may be changed during the execution of a program. <methods?>, …

In Java, an object consists of

data-items or instance variables
Methods

Modeling aspects

Examples

1.2 Class

A class is a template for creating objects

A class may be used to represent a concept

In Java:

A class definition has the following form:

public class Name extends Object

{
 “description of data-items and methods”
}

At this point the important elements of this description is

class Name – which declares that we are defining class with the name Name
public is a so-called modifier, which we will explain later
extends Object will also be ignored for the moment

1.3 Data-item/instance variable

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 10
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

A data-item – also called instance variable or just variable, is a container that may hold a value. A data-item has a name
and a type. The name is used to denote the data-item from other places in the code. The type of the data-item defines the
set of possible values that the data-item may have during execution of the program.

A data-item is defined by means of a declaration, which in its simplest version has the form

 <type> <name>;

An example of a declaration is

int balance;

1.3.1 Initial value of a data-item

A data-item declaration may also define an initial value for the data-item. In this case, the declaration has the form:

 <type> <name> = <expression>;

An example of a declaration with an initial value is:

int balance = 0;

1.3.2 Modifiers

A data-item declaration may contain a modifier (or several)

<access> <type> <name> = <expression>;

1.4 Simple types

int

double

The type double contains so-called floating-point values, which are comma-values. Examples of such values are
3.14, -113.123, 0.0, 999.11, etc.

char

1.5 Reference values

1.6 Method

A method is a template for creating method-activations

1.7 Method-activation

1.8 Constructor

…

2 Sequence diagrams

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 11
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

The diagrammatic notation used in Figure 6 illustrates how execution progresses in a Java-program.

1. A vertical column represents an entity such as object, class or method-activation.
2. An entity is shown as a box. The top of a column, is always a box representing the entity
3. The thin vertical line below the entity is called the object’s lifeline. The lifeline represents the life of the object during

the scenario described by the diagram.
4. A thick line represents that the entity is active by executing actions in that period.
5. A horizontal arrow between the lifelines of two entities represents a method invocation. A method arrow is labeled

with the name of the method and sometimes with the full statement.
6. Entities at the top of the diagram are in existing when the scenario starts. During execution of the scenario, new

entities (objects or method-activations) may be created.
7. Creation of a new object is shown by a method-arrow with the label new.
8. Creation of a method-activation is shown with a method-arrow labeled by the name of the method being invoked
9. A given entity may be drawn several times along its lifeline. This is done when the state of the entity is changed

during execution.

Extra stuff:

If the arrow does not begin at a lifeline, then the action is invoked by some item not shown on the diagram.

The two items are also shown in Error! Reference source not found. (a) and (b).

Execution of an action new Account() may be illustrated by the diagram in Error! Reference source not found..

The last item in Error! Reference source not found. is the box shown in Error! Reference source not found.d. Such a
box is called an activation-box and shows when an item is active executing actions.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 12
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

