
10.2-OLD The Flight Example

Description

+++ Det følgende skal måske stå i kap 5 eller et andet sted. Vi bruger det vel også i Transaction, og vel også i Account
OLM: enig – men ret så omfattende
Nemmere hvis du kommentarer med blå baggrund og tiny? ?

class Date(year: var integer, month: var integer, day: var integer): Value
 setDate(y: var integer, m: var integer, d: var integer):
 year := y
 month := m
 day := d
 asString -> s: var String:
 s := year + "." + month + "." + day

class TimeOfDay(th: var Time.Hours): Value
 - :

in p: var TimeOfDay
out r: var Time.Hours

 r.magnitude := th.magnitude - p.th

class AnyTime(d: var Date, td: var TimeOfDay(0 hours)): Value
 - :

in p: var AnyTime(Date, TimeOfDay)
out r: var Time.Hours

 r.magnitude := td.th.magnitude - p.td.th

In order to define the period between two values of TimeOfDay or AnyTime, the operator ‘-‘ (minus) is defined for both
TimeOfDay and AnyTime.

These classes are in turn defined based upon the dimension Time defined as follows.

Time: obj Dimension
class Hours: Unit{...}
class Minutes: Unit{...}
class Seconds: Unit{...}

 ...

Every dimension is defined by the units in which values in a dimension are given; for Time we have a.o. Hours, Minutes,
and Seconds as shown above. The value is held by the magnitude.

class Dimension:
class Unit: Value

 magnitude: var float
 ...
 ...

We will not go into details here, but for each unit of a dimension, values may be annotated by a string that denote the unit.
For the unit Hours in Time this string is “hours“, so the expression TimeOfDay(0 hours) makes a TimeOfDay value
with unit Hours and the magnitude 0.

According to Webster, a clock is for measuring Time, and a clock may actually hold a Time.Hour value. But is reset to zero
at midnight. Unless using am/pm!?
Time24? +++ linken til hvordan er gjort i Java (https://www.baeldung.com/java-8-date-time-intro)

Flight Routes and Flights +++ skal blive 10.2.1

In the following we illustrate nested classes by an example in the domain of flights and flight routes. An airline company like

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 1
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

https://www.baeldung.com/java-8-date-time-intro

SAS has a timetable with all their flight routes with flights, e.g. SK SK 1926 from Aarhus in Denmark to Oslo in Norway, and
SK 1927 from Oslo to Aarhus.

Time tables, routes and flights are obvious represented by objects. They are used for two different purposes: as a basis for
bookings (e.g as in the chapter on travel bookings, +++) and as a basis for a website that shows the status of flights at a
specific airport, i.e. whether flights are scheduled (time of departure), cancelled, expected time of arrival, has arrived (and at
what time), etc.

Flypladserne har et sådant system, eller det vil sige f.eks. Avinor i Norge,
https://www.avinor.no/konsern/tjenester/flydata/flydata-i-xml-format

Men uanset, så har SAS en hjemmeside hvor denne type information præsenteres:
https://www.sas.no/travel/flightstatus?date=2024-06-04&departureStation=OSL&arrivalStation=&

A timetable has an entry for each of the different routes, and in the model each entry is represented by an object of class
Route:

timeTable: obj -- alternative just Routes
 entries: obj OrderedList(Route)
 createFlights(d: var Date(0,0,0)):
 entries.scan
 current.createFlight(d)

Each Route object has attributes that represent the name of the route, the source and destination airports, the scheduled
departure and arrival time, and scheduled flying time The flights of a route is represented by a list of Flight objects for
each Route object.

class Route(name, origin, destination: var String):
 scheduledDepartureTime: var TimeOfDay
 scheduledArrivalTime: var TimeOfDay
 scheduledFlyingTime -> sft: var
 Time.Hours:
 sft := scheduledArrivalTime - scheduledDepartureTime

setTime(dt: var TimeOfDay(0 hours),
 at: var TimeOfDay(0 hours))
 scheduledDepartureTime := dt
 scheduledArrivalTime := at

 flights: obj
 OrderedList(Flight)
 createFlight(d: var Date(0,0,0)):
 flights.insert(Flight(d, scheduledDepartureTime, scheduledArrivalTime))

The scheduledFlyingTime is only used on the website for making bookings, as this is an important information when
booking, while scheduledDepartureTime and scheduledArrivalTime are also used for showing flight status, at
airports or at the flight status website of the airline company. The reason that scheduledDepartureTime and
scheduledArrivalTime are not modelled as parameters of Route is that these times may be changed at different
setups of the time table.

Setting up the time table is done by a sequence of actions that generate Route objects, set the values of their attributes
and insert them into the timeTable:

SK1926: obj Route("SK1926", "AAR", "OSL")
 Sk1926.setTime(TimeOfDay(12.30 hours), TimeOfDay(13.50 hours))

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 2
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

https://www.avinor.no/konsern/tjenester/flydata/flydata-i-xml-format
https://www.sas.no/travel/flightstatus?date=2024-06-04&departureStation=OSL&arrivalStation=&

 timeTable.entries.insert(SK1926)
 ...
 SK1927: obj Route("SK1927", "OSL", "AAR")
 SK1927.setTime(TimeOfDay(14.20 hours), TimeOfDay(15.40 hours))

timeTable.entries.insert(SK1927)
 ...

For a given route (e.g. SK1926) the flights attribute of the corresponding Route object keeps track of the flights of this
route. This is illustrated below. For each route there is a Route object, and for each Route object there are a number of
Flight objects. +++ kunne illustrere flights-attributten.

So far we have not modelled where the class Flight is defined. It could be a class along with the class Route, however,
the class Flight that represent the flights of a given route is only meaningful in the context of the given route. As we have
defined the class Route, so that each object of class Route represents a specific route, the class Flight is therefore
defined in the context of class Route. A specific Route object will thereby have its own class Flight of objects
representing flights on this route. Another Route object will have another class Flight.

+++ as mentioned A class is defined in the context of another class by nesting its description in the description of the

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 3
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

context class.

class Route(name, origin, destination: ref String):
 scheduledDepartureTime: var TimeOfDay
 scheduledArrivalTime: var TimeOfDay
 scheduledFlyingTime -> sft: var Time.Hours
:
 sft := scheduledArrivalTime - scheduledDepartureTime

setTime: -- as above +++
 flights: obj OrderedList(Flight)

class Flight(departureDate: var Date):
seats: ...
estimatedDepartureTime: var TimeOfDay

 estimatedArrivalTime -> e: var
 Time.Hours:
 e := estimatedDepartureTime + scheduledFlyingTime
 departureTime: var TimeOfDay -- actual
 arrivalTime: var TimeOfDay -- actual
 actualFlyingTime: -> aft: var Time.Hours

 aft := arrivalTime - departureTime
 delay -> period: var Time.Hours:
 period := arrivalTime – scheduledArrivalTime
 delayed: var Boolean

delayDeparture(newTime: var Time):
 -- this is called in case the departure is delayed

delayed := True
 estimatedDepartureTime := newTime

hasArrived: var Boolean
hasTakenOff: var Boolean

This is illustrated with circle-enclosed ‘+’ annotated relation between objects of class Route and the class Flight:

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 4
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

Route objects with nested Flight classes and corresponding objects

A Flight object has attributes representing the actual departure time, the actual arrival time and the actual flying time. For
the purpose of showing status of the flight in case the departure time is delayed, it also has the attribute
estimatedDepartureTime and the method estimatedArrivalTime.

Objects of class Flight are created as soon as it is possible to make bookings on this flight, typically some months before
scheduled departure. At that time the departureDate is set. The estimatedDepartureTime is set to the
scheduledDepartureTime from its Route object, but this may be changed according to possible delays.

If the flight is delayed, the method delayDeparture of the actual Flight object is called, with the new time as
parameter. In addition to setting estimatedDepartureTime, delayed is set to True.

At take off, departureTime is set to the time of take off, hasTakenOff is set to True, and hasArrived is set to False.
While flying the attribute arrivalTime is set based on weather condition and the landing condition of the destination
airport. It is therefore assumed that this is set based on real time information from the plane. At arrival, hasArrived is set
to True and hasTakenOff to False.

The following shows how nesting is used to compute the delay. By nesting the Flight class in the Route class, the
attributes of Route are directly visible in class Flight. The method delay (in class Flight) may therefore compute the
delay of the flight by subtracting the arrivalTime (in the enclosing Route) from the local Flight property ArrivalTime
: +++ ændre figuren

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 5
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

When it comes to where the Flight objects should be held, in practice this will probably be in a data base, together withe
the Route objects. From this data base it will then be possible to extract the following sets/lists. In the following we will just
make a simple object structure that can be used for both showing status of flights and for booking of flights.

For the purpose of creating Flight objects for a route, the class Route will have the method createFlight:

class Route(name, origin, destination: ref String):
 -- as above

createFlight(d: var Date):
f: ref Flight

 f := Flight(d)
 f.estimatedDepartureTime := scheduledDepartureTime
 flights.insert(f)

Showing status of flights

Status of flights are provided in two different ways, either given the source/destination airport at a given date, or given the
name of the route, e.g. SK1926. In the first case the pair (airport origin/destination, date) shall extract a list of Flight
objects from the data base. In the second case the extract is based upon the tuple (route name, origin/destination airport,
date). For booking the tuple (source airport, destination airport, data) is used for the extraction.+++ måske i et senere afsnit.
OLM: tror man skal holde sig til en af tilfældene så det blir så simplest som muligt.

In the following we will show how it would be done based upon the object structure given by the objects and classes
introduced above: timeTable with a list of Route objects, and each Route object with a list of Flight objects. We define
two of status methods of Flight that deliver strings that should be displayed on the status website (+++ nævne XML/HTML –
OLM: diskussion af et real system synes jeg man kan samle sidst som et discussion afsnit – har gjort det med 10.3): status
on departure, and status on arrival.

The method departureStatus defined below is called before take off of the flight:

Synes stadig ikke man skal have både estimated DT of DT

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 6
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

Og tror departureStatus kan gøres simplere med hjælpemetoder.
Meget lange eksempler nedenfor – list lost ?

class Flight:
 departureDate: var Date
 seats: ...
 estimatedDepartureTime: var TimeOfTime
 estimatedArrivalTime -> e: var TimeOfDay:
 e := estimatedDepartureTime + scheduledFlyingTime
 departureTime: var TimeOfDay -- actual/estimated
 arrivalTime: var TimeOfDay -- actual/estimated

scheduledDepartureTime -> sdt: TimeOfDay:
 sdt := this(Route).scheduledDepartureTime
 flyingTime: -> ft: var Time.Hours
 ft := arrivalTime - departureTime
 delay -> period: var Time.Hours:
 period:= arrivalTime – scheduledArrivalTime
 delayed: var Boolean

delayDeparture(newTime: var Time):
 -- this is called in case the departure is delayed

delayed := True
 estimatedDepartureTime := newTime
 hasTakenOff: var Boolean
 hasArrived: var Boolean

departureStatus -> info: var String:
-- this is called before the flight has taken off
info := ("Flight " + name + " at: " + departureDate.asString)

 if departureDelayed :then
 info := info + "Estimated departure time: "+ estimatedDepartureTime +

" expected arrival time: " + (+++estimatedDepartureTime
 + flyingTime)
 :else
 info := info + " On schedule: " +
 F2S(scheduledDepartureTime.t.magnitude)

The next method is called after take off:

class Flight(departureDate: var Date):
+++...

arrivalStatus -> info: var String:
-- this is called when the flight has taken off
info := ("Flight " + name + " at: " + departureDate.asString)

 info := info + "Departed at: "+ departureTime
if (not hasArrived) :then info := info + " expected at: " + arrivalTime
:else

info := info + " arrived at: " + estimatedArrivalTime +

" delayed: " + delay

Based upon the entries in the time table, flight status is provided by:

showFlightStatus:
 timeTable.scanTimeTable
 r: ref Route
 r := current
 r.scan
 if (not hasTakenOff) :then
 currentFlight.departureStatus.print
 :else
 currentFlight.arrivalStatus.print
 newline	

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 7
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

This is based upon a scanTimeTable method:

timeTable: obj
 entries: obj OrderList(Route)

scanTimeTable:
 current: ref Route
 entries.scan
 this(scanTimeTable).current := current
 inner(scanTimeTable)
 lookupRoute(routeId: var String) -> theRoute: ref
 Route:
 entries.scan
 if (current.name = routeId):then
 theRoute := current
 leave(LookupRoute)

which in turn is based upon a scan of routes:

class Route(name, origin, destination: ref String):
 -- as above

scan:
 currentFlight: ref Flight
 flights.scan
 currentFlight := current
 inner(scan)

showFlightStatus:
 timeTable.scanTimeTable
 r: ref Route
 r := current
 r.scan
 if (not hasTakenOff) :then
 currentFlight.departureStatus.print
 :else
 currentFlight.arrivalStatus.print
 newline	

For the purpose of providing status of flights we have two ways to ask for that: flights departing or arriving from a given
airport at a given date, or flights of a given route at a given airport and date.

From/to a given airport, at a given date

fromAirport(ap: var String, d: var Date)
 -> flightList: ref OrderedList(Flight):
 routeList: obj OrderedList(Route)
 timeTable.entries.scan
 if (current.origin = ap :then
 routeList.insert(current)
 routeSet.scan
 current.flights.scan
 if (current.date = d) :then
 flightList.insert(current)

break+++

toAirport(ap: var String, d: var Date)
 -> flightList: ref OrderedList(Flight):
 routeList: obj OrderedList(Route)
 timeTable.entries.scan
 if (current.destination = ap :then routeList.insert(current)
 routeList.scan
 current.flights.scan
 if (current.date = d) :then flightList.insert(current)

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 8
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

Before the list of Flight objects delivered by these two methods are used for producing the status website, the list
delivered by fromAirport should be sorted according to departure time (in fact scheduled departure time, as this should
be displayed together with the actual departure time), while the list of Flight objects delivered by toAirport should be
sorted according to arrival time.

Given these two lists of Flight objects, the status website can produce the two strings delivered by the methods
departureStatus and arrivalStatus.

fromAirport("OSL", Date(11,11, 1949)).scan
 current.departureStatus.print
fromAirport("OSL", Date(11,11, 1949)).scan
 current.arrivalStatus.print

fromAirport("ARR", Date(11,11, 1949)).scan
 current.departureStatus.print
fromAirport("ARR", Date(11,11, +++1949)).scan
 current.arrivalStatus.print

Given the Route name, airport, and a given date

For this case we just provide the code:

onRouteNameFrom(n: var String, from: var String d: var Date)
 -> flightList: ref OrderedList(Flight):
 theRoute: ref Route
 theRoute := timeTable.lookupRoute(n)
 if theRoute.origin = from :then
 theRoute.flights.scan
 if (current.date = d) :then flightList.insert(current)

++++ break

onRouteNameTo(n: var String, to: var String d: var Date)
 -> flightList: ref OrderedList(Flight):
 theRoute: ref Route
 theRoute := timeTable.lookupRoute(n)
 if theRoute.origin = to :then
 theRoute.flights.scan
 if (current.date = d) :then flightList.insert(current)

onRouteNameFrom("SK1926", "ARR" Date(11,11,1949)).scan
 current.departureStatus.print
onRouteNameTo("SK1926", "OSL" Date(11,11,1949)).scan
 current.arrivalStatus.print

Booking flights

It is not so obvious that the object structure that works for providing flight status also works for flight booking. The following
shows that this is possible. Booking is based upon choosing origin and destination airports, together with a date. In practise
the airline company will provide options for the given date plus/minus a couple of day; the following simply gives the flights
at just on date:

flightsForBooking(from, to: var String, d: var Date)
 -> flightList: ref OrderList(Flight):
 routeList: obj OrderedList(Route)
 timeTable.entries.scan
 if (current.origin = from and current.destination = to)
 :then routeList.insert(current)
 routeList.scan
 current.flights.scan
 if (current.date = d) :then flightList.insert(current)

The list of Flight objects delivered by this method will form the basis for a website where the Flight information is

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 9
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

displayed together with e.g. price, in a form that makes it possible to select one of the flights.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 10
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

