OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Mgller-Pedersen

10.2-OLD The Flight Example
Description

+++ Det fglgende skal maske sté i kap 5 eller et andet sted. Vi bruger det vel ogsa i Transaction, og vel ogsa i Account
OLM: enig — men ret s& omfattende
Nemmere hvis du kommentarer med bla baggrund og tiny? ?

cl ass Date(year: var integer, nonth: var integer, day: var integer): Value
setDate(y: var integer, m var integer, d: var integer):

year 1=y
month := m
day :=d

asString -> s: var String:
s :=year +"." + nmonth + "." + day

class Ti meOf Day(th: var Tinme. Hours): Val ue

in p: var TimeOk Day
out r: var Tinme.Hours
r.magni tude := th.magnitude - p.th

class AnyTinme(d: var Date, td: var TinmeO Day(0 hours)): Val ue

in p: var AnyTi ne(Date, TineC Day)
out r: var Tinme.Hours
r.magnitude := td.th.magnitude - p.td.th

In order to define the period between two values of Ti mref Day or AnyTi ne, the operator ‘- * (minus) is defined for both
Ti meOr Day and AnyTi ne.

These classes are in turn defined based upon the dimension Ti ne defined as follows.

Ti me: obj Di mension
class Hours: Unit{...}
class Mnutes: Unit{...}
cl ass Seconds: Unit{...}

Every dimension is defined by the units in which values in a dimension are given; for Ti me we have a.o. Hour s, M nut es,
and Seconds as shown above. The value is held by the magni t ude.

cl ass Di nensi on:
class Unit: Val ue
magni t ude: var fl oat

We will not go into details here, but for each unit of a dimension, values may be annotated by a string that denote the unit.
For the unit Hour s in Ti me this string is “hour s“, so the expression Ti meOf Day(0 hours) makes a Ti meOf Day value
with unit Hour s and the nagni t ude 0.

According to Webster, a clock is for measuring Time, and a clock may actually hold a Time.Hour value. But is reset to zero
at midnight. Unless using am/pm!?
Time24? +++ linken til hvordan er gjort i Java (https://www.baeldung.com/java-8-date-time-intro)

Flight Routes and Flights +++ skal blive 10.2.1

In the following we illustrate nested classes by an example in the domain of flights and flight routes. An airline company like

Page 1
© Copyright by Ole Lehrmann Madsen and Birger Mgller-Pedersen 2023.

https://www.baeldung.com/java-8-date-time-intro

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Mgller-Pedersen

SAS has a timetable with all their flight routes with flights, e.g. SK SK 1926 from Aarhus in Denmark to Oslo in Norway, and
SK 1927 from Oslo to Aarhus.

Scandinavian Airlines SK 1926 Scandinavian Airlines SK 1927

12230 -13:50 direct 1h20m 120 - 15:40 direct 1h 20m
45 A5 14:20 - 15:40

Time tables, routes and flights are obvious represented by objects. They are used for two different purposes: as a basis for
bookings (e.g as in the chapter on travel bookings, +++) and as a basis for a website that shows the status of flights at a
specific airport, i.e. whether flights are scheduled (time of departure), cancelled, expected time of arrival, has arrived (and at
what time), etc.

Flypladserne har et sddant system, eller det vil sige f.eks. Avinor i Norge,
https://www.avinor.no/konsern/tjenester/flydata/flydata-i-xml-format

Men uanset, sa har SAS en hjemmeside hvor denne type information praesenteres:
https://www.sas.no/travel/flightstatus?date=2024-06-04&departureStation=0SL&arrivalStation=&

A timetable has an entry for each of the different routes, and in the model each entry is represented by an object of class
Rout e:

timeTable: obj -- alternative just Routes
entries: obj OrderedLi st (Route)
createFlights(d: var Date(0,0,0)):
entries.scan
current.createFlight(d)

Each Rout e object has attributes that represent the name of the route, the source and destination airports, the scheduled
departure and arrival time, and scheduled flying time The flights of a route is represented by a list of Fl i ght objects for
each Rout e object.

cl ass Route(nanme, origin, destination: var String):
schedul edDepartureTi me: var Ti neCf Day
schedul edArrival Ti me: var Ti meOf Day
schedul edFl yi ngTinme -> sft: var
Ti me. Hour s:
sft := schedul edArrival Time - schedul edDepartureTi ne
setTime(dt: var TinmeO Day(0 hours),
at: var TinmeO Day(0 hours))
schedul edDepartureTi ne : = dt
schedul edArrival Tinme : = at

flights: obj
Or deredLi st (Flight)
createFlight(d: var Date(0,0,0)):
flights.insert(Flight(d, schedul edDepartureTi ne, schedul edArrival Tine))

The schedul edFl yi ngTi e is only used on the website for making bookings, as this is an important information when
booking, while schedul edDepar t ur eTi me and schedul edArri val Ti me are also used for showing flight status, at
airports or at the flight status website of the airline company. The reason that schedul edDepart ur eTi e and
schedul edArri val Ti ne are not modelled as parameters of Rout e is that these times may be changed at different
setups of the time table.

Setting up the time table is done by a sequence of actions that generate Rout e objects, set the values of their attributes
and insert them into the t i meTabl e:

sk1926. set Ti me(Ti meCf Day (Il hours), Ti meOf Day(13.50 hours))

Page 2
© Copyright by Ole Lehrmann Madsen and Birger Mgller-Pedersen 2023.

https://www.avinor.no/konsern/tjenester/flydata/flydata-i-xml-format
https://www.sas.no/travel/flightstatus?date=2024-06-04&departureStation=OSL&arrivalStation=&

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Mgller-Pedersen

ti meTabl o/

SK1927: obj Route("”SK1927", "CSL", "AAR')
SK1927. set Ti me(Ti neCf Day(14. 20 hours), Ti neOf Day(15.40 hours))

For a given route (e.g. SK1926) the f | i ght s attribute of the corresponding Rout e object keeps track of the flights of this
route. This is illustrated below. For each route there is a Rout e object, and for each Rout e object there are a number of
Fl i ght objects. +++ kunne illustrere flights-attributten.

Scandinavian Airfines 5K 1926 I ——— LRSS : Route
WA - 13 H = !
s 12:30-1%50 direct 1h20m : name="5K1926"
! origin="Aarhus
R = : destination="0slo”
Scandinavian Airlines SK 1927 "
]
14:20 = 15:40 direct th20m [9----- e e ———— I
FTY : .
]
i
1
]
May 11,2023 | " : Flight
]
:Icw 7, 2023 l [e _i ________ : Flight
Mov 1_1. 2023 | o . Flight
Scandinavian Airlines 5K 1926 - i
e ‘ ---------- .
12:30-13:50 direct 1h 20m ; departureDate=Nov 1
J4S i
]
|]
flights — i
May 11, 2023 | h
Nov 7, 2023 l :
i Nov1i,2023 : P
Scandinavian Airlines 5K 1927 » : :
] 120 - 15:40 direct 1h 20m :
S4f 14:20 - 15:40 '
]
]
'
Domain with phenomena Model with objects
Legend
3' =======k :rapresents

So far we have not modelled where the class Fl i ght is defined. It could be a class along with the class Rout e, however,
the class Fl i ght that represent the flights of a given route is only meaningful in the context of the given route. As we have
defined the class Rout e, so that each object of class Rout e represents a specific route, the class Fl i ght is therefore
defined in the context of class Rout e. A specific Rout e object will thereby have its own class Fl i ght of objects
representing flights on this route. Another Route object will have another class Fl i ght .

+++ as mentioned A class is defined in the context of another class by nesting its description in the description of the

Page 3
© Copyright by Ole Lehrmann Madsen and Birger Mgller-Pedersen 2023.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Mgller-Pedersen

context class.

cl ass Route(nanme, origin, destination: ref String):
schedul edDepartureTi me: var Ti neCf Day
schedul edArrival Ti me: var Ti meOf Day
schedul edFl yi ngTine -> sft: var Tine. Hours

sft := schedul edArrival Ti me - schedul edDepartureTi ne
setTime: -- as above +++
flights: obj OrderedList(Flight)

class Flight(departurebDate: var Date):
seats: ...
esti mat edDepartureTi ne: var Ti meCf Day
estimatedArrival Time -> e: var
Ti me. Hour s:
e := estimtedDepartureTi ne + schedul edFl yi ngTi me
departureTinme: var TimeOfDay -- actua
arrival Tine: var Ti meCf Day -- actua
actual FlyingTinme: -> aft: var Tinme. Hours
aft := arrival Time - departureTine
delay -> period: var Tine.Hours:
period := arrival Time — schedul edArrival Ti nme
del ayed: var Bool ean
del ayDepart ure(newTli ne: var Tine):
-- this is called in case the departure is del ayed
del ayed : = True
esti mat edDepartureTi ne : = newTi ne
hasArrived: var Bool ean
hasTakenOf f: var Bool ean

This is illustrated with circle-enclosed ‘+' annotated relation between objects of class Route and the class Flight:

Page 4
© Copyright by Ole Lehrmann Madsen and Birger Mgller-Pedersen 2023.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Mgller-Pedersen

: Route : Route

name = “SK1926” name = “SK1927
origin = “Aarhus origin = “Oslc
Destination = *“0Oslo” destination = “Aarhus
. P— —

Flight

departureDate: Date de

: Eldirmh+ |
e« E143 bt |

' : Flight

| | departureDate = Nov 11

o8 @

Route objects with nested Flight classes and corresponding objects

A Fl i ght object has attributes representing the actual departure time, the actual arrival time and the actual flying time. For
the purpose of showing status of the flight in case the departure time is delayed, it also has the attribute
est i mat edDepart ur eTi ne and the method est i mat edArri val Ti ne.

Objects of class Fl i ght are created as soon as it is possible to make bookings on this flight, typically some months before
scheduled departure. At that time the depar t ur eDat e is set. The est i mat edDepart ur eTi e is set to the
schedul edDepart ur eTi e from its Rout e object, but this may be changed according to possible delays.

If the flight is delayed, the method del ayDepar t ur e of the actual Fl i ght object is called, with the new time as
parameter. In addition to setting est i mat edDepart ur eTi e, del ayed is set to Tr ue.

At take off, depar t ur eTi ne is set to the time of take off, hasTakenCOf f is set to Tr ue, and hasArri ved is set to Fal se.
While flying the attribute ar ri val Ti ne is set based on weather condition and the landing condition of the destination
airport. It is therefore assumed that this is set based on real time information from the plane. At arrival, hasArri ved is set
to True and hasTakenOf f to Fal se.

The following shows how nesting is used to compute the delay. By nesting the Fl i ght class in the Rout e class, the
attributes of Rout e are directly visible in class FI i ght . The method del ay (in class Fl i ght) may therefore compute the
delay of the flight by subtracting the ar ri val Ti ne (in the enclosing Rout e) from the local Fl i ght property Arri val Ti ne
. +++ gendre figuren

Page 5
© Copyright by Ole Lehrmann Madsen and Birger Mgller-Pedersen 2023.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Mgller-Pedersen

For the purpose of creating FI i ght objects for a route, the class Rout e will have the method cr eat eFl i ght :

cl ass Route(nane, origin, destination: ref String):
-- as above
createFlight(d: var Date):
f: ref Flight
f := Flight(d)
f.estimat edDepartureTi me : = schedul edDepart ureTi me
flights.insert(f)

Showing status of flights

Status of flights are provided in two different ways, either given the source/destination airport at a given date, or given the
name of the route, e.g. SK1926. In the first case the pair (airport origin/destination, date) shall extract a list of Fl i ght
objects from the data base. In the second case the extract is based upon the tuple (route name, origin/destination airport,
date). For booking the tuple (source airport, destination airport, data) is used for the extraction.+++ maske i et senere afsnit.
OLM: tror man skal holde sig til en af tilfeeldene sa det blir s& simplest som muligt.

In the following we will show how it would be done based upon the object structure given by the objects and classes
introduced above: t i meTabl e with a list of Rout e objects, and each Rout e object with a list of FI i ght objects. We define
two of status methods of Flight that deliver strings that should be displayed on the status website (+++ naevne XML/HTML —
OLM: diskussion af et real system synes jeg man kan samle sidst som et discussion afsnit — har gjort det med 10.3): status
on departure, and status on arrival.

The method departureStatus defined below is called before take off of the flight:

Synes stadig ikke man skal have bade estimated DT of DT

Page 6
© Copyright by Ole Lehrmann Madsen and Birger Mgller-Pedersen 2023.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Mgller-Pedersen

Og tror departureStatus kan ggres simplere med hjselpemetoder.
Meget lange eksempler nedenfor — list lost ?

class Flight:
departureDate: var Date
seats: ..
esti mat edDepartureTine: var Ti neOf Ti ne
estimatedArrival Time -> e: var Ti neOf Day:

e : = estimtedDepartureTi ne + schedul edFl yi ngTi me
departureTine: var TinmeO Day -- actual/estinmted
arrival Tine: var Ti meCf Day -- actual /estimted
schedul edDepartureTine -> sdt: Ti neC Day:

sdt := this(Route).schedul edDepartureTi ne
flyingTine: -> ft: var Time. Hours

ft :=arrival Time - departureTine
delay -> period: var Tine.Hours:

period: = arrival Tine — schedul edArrival Ti ne
del ayed: var Bool ean
del ayDepart ure(newTi ne: var Tine):

-- this is called in case the departure is del ayed

del ayed : = True

esti mat edDepartureTi ne : = newTi e
hasTakenOf f: var Bool ean
hasArrived: var Bool ean

departureStatus -> info: var String:
-- this is called before the flight has taken off

info := ("Flight " + nane + " at: " + departureDate.asString)
i f departureDel ayed :then
info := info + "Esti mated departure tinme: "+ estinmatedDepartureTine +

+ flyingTi ne)
el se
info :=info +" On schedule: " +
F2S(schedul edDepartureTi me.t. magni t ude)

The next method is called after take off:

class Flight(departurebDate: var Date):
+++, ..

arrival Status -> info: var String
-- this is called when the flight has taken off

info := ("Flight " + nane + " at: " + departureDate.asString)

info :=info + "Departed at: "+ departureTine

m info :=info NG
el se

Based upon the entries in the time table, flight status is provided by:

showFl i ght St at us:
ti meTabl e. scanTi meTabl e
r: ref Route
r := current
r.scan
if (not hasTakenOff) :then
current Fl i ght. departureStatus. print
el se
currentFlight.arrival Status. print
new i ne

Page 7
© Copyright by Ole Lehrmann Madsen and Birger Mgller-Pedersen 2023.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Mgller-Pedersen

This is based upon a scanTi neTabl e method

ti meTabl e: obj
entries: obj OderlList(Route)
scanTi neTabl e:
current: ref Route
entries.scan
thi s(scanTi neTabl e).current := current
i nner (scanTi meTabl e)
| ookupRout e(routeld: var String) -> theRoute: ref
Rout e:
entries.scan
if (current.name = routeld):then
theRoute := current
| eave(LookupRout e)

which in turn is based upon a scan of routes:

cl ass Route(nane, origin, destination: ref String):
-- as above
scan:
currentFlight: ref Flight
flights.scan
currentFlight := current
i nner (scan)

showFl i ght St at us:
ti meTabl e. scanTi neTabl e
r: ref Route
r := current
r.scan
if (not hasTakenOff) :then
current Fl i ght. departureStatus. print
el se
currentFlight.arrival Status. print
new i ne

For the purpose of providing status of flights we have two ways to ask for that: flights departing or arriving from a given
airport at a given date, or flights of a given route at a given airport and date.

From/to a given airport, at a given date

fromAirport(ap: var String, d: var Date)
-> flightList: ref OrderedList(Flight):
rout eLi st: obj OrderedList(Route)
timeTabl e. entri es. scan
if (current.origin = ap :then
routelList.insert(current)
rout eSet . scan
current.flights.scan
if (current.date = d) :then
flightList.insert(current)

br eak+++

toAi rport(ap: var String, d: var Date)

-> flightList: ref OrderedList(Flight):
rout eLi st: obj OrderedList(Route)
ti neTabl e. entri es. scan

if (current.destination = ap :then routelist.insert(current)
rout eLi st. scan

current.flights.scan

if (current.date = d) :then flightList.insert(current)

Page 8
© Copyright by Ole Lehrmann Madsen and Birger Mgller-Pedersen 2023.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Mgller-Pedersen

Before the list of FI i ght objects delivered by these two methods are used for producing the status website, the list
delivered by f r omAi r port should be sorted according to departure time (in fact scheduled departure time, as this should
be displayed together with the actual departure time), while the list of FI i ght objects delivered by t oAi r port should be
sorted according to arrival time.

Given these two lists of FI i ght objects, the status website can produce the two strings delivered by the methods
departureStatus and arri val St at us.

fromAirport("OSL", Date(11,11, 1949)).scan
current.departureStatus. print

fromAi rport("OSL", Date(11,11, 1949)).scan
current.arrival Status. print

fromAirport ("ARR', Date(11,11, 1949)).scan
current. departureStatus. print

fromAirport ("ARR', Date(11,11, +++1949)).scan
current.arrival Status. print

Given the Route name, airport, and a given date

For this case we just provide the code:

onRout eNaneFrom(n: var String, from var String d: var Date)
-> flightList: ref O deredList(Flight):
theRoute: ref Route
theRoute : = tinmeTabl e. | ookupRout e(n)
if theRoute.origin = from:then
theRout e. flights. scan
if (current.date = d) :then flightList.insert(current)

++++ break

onRout eNanmeTo(n: var String, to: var String d: var Date)
-> flightList: ref OrderedList(Flight):
theRoute: ref Route
theRoute : = timeTabl e. | ookupRout e(n)
if theRoute.origin =to :then
theRout e. flights. scan
if (current.date = d) :then flightList.insert(current)

onRout eNaneFr om(" SK1926", "ARR' Date(11, 11, 1949)). scan
current. departureStatus. print

onRout eNaneTo(" SK1926", "OSL" Date(11, 11, 1949)).scan
current.arrival Status. print

Booking flights

It is not so obvious that the object structure that works for providing flight status also works for flight booking. The following
shows that this is possible. Booking is based upon choosing origin and destination airports, together with a date. In practise
the airline company will provide options for the given date plus/minus a couple of day; the following simply gives the flights
at just on date:

flightsForBooking(from to: var String, d: var Date)
-> flightList: ref OderList(Flight):
rout eLi st: obj OrderedList(Route)
ti meTabl e. entries. scan
if (current.origin = fromand current. destination = to)
:then routeList.insert(current)
rout eLi st. scan
current.flights.scan
if (current.date = d) :then flightList.insert(current)

The list of FI i ght objects delivered by this method will form the basis for a website where the Fl i ght information is

Page 9
© Copyright by Ole Lehrmann Madsen and Birger Mgller-Pedersen 2023.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Mgller-Pedersen

displayed together with e.g. price, in a form that makes it possible to select one of the flights.

Page 10
© Copyright by Ole Lehrmann Madsen and Birger Mgller-Pedersen 2023.

