
12.1 A simple search system

Description

As a first simple example, we will consider a problem in the domain of searching. Suppose we have an array of 150.000
records with people. We want to find all persons with an age between 18 and 24. We may do this by writing a method that
goes through all the records and check the ages. We may also split the task into three tasks and define three activities
where each activity handles one third of the records. This should speed up the process, compared to using just one activity.

The basic elements of a parallel system are objects executing activities in parallel – called active objects. Below we show
how the search-activity may be split between active objects:

aSimpleSearcher: obj BasicSystem
 searcherA: obj BasicProcess
 search(1,50000)
 searcherB: obj BasicProcess
 search(50001,100000)
 searcherC: obj BasicProcess
 search(10001,150000)
 :::
 searcherA.start
 searcherB.start
 searcherC.start

The object aSimpleSearcher is subclassed from a class BasicSystem, which
is a class that defines abstractions for describing objects that may execute in
parallel. One of these abstractions is class BasicProcess, which may be used
as a superclass for objects that execute in parallel. We supply the details of
BasicSystem in a later chapter.

class BasicSystem:
class BasicProcess:

 start: :::
 :::
 :::

The object aSimpleSearcher contains three searcher-objects, searcherA, searcherB, and searcherC which all are
subclassed from BasicProcess. This means that they may execute in parallel. The execution of the three searcher-
objects is started by invocation of the start method of class BasicProcess: searcherA.start, etc. They all invoke a
search-method on their third of the list of records. The search-method searches the range of objects within the
arguments of search.

Next we supply the details of the searching activity, that is the method search – we assume that we have a class Person
with a name and an age attribute:

To simplify the example, we assume that we
have 150000 records. In general, it is not a good
idea to encode constants like this in the code.
Instead such values should be a parameter of a
class or method or being read as data from
some source.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 1
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

aSimpleSearcher: obj BasicSystem
 records: obj Array(150000, Person)
 search(first, last: var integer):
 for (first):to(last):repeat
 if ((18 <= records[inx].age)
 and (records[inx].age <= 24)) :then
 collector.insert(records[inx])
 collector: obj :::
 :::
class Person:
 name: var String
 age: var integer
 ...

The object aSimpleSearcher has a local array, records, which is an array containing 150000 Person-objects. The
method search searches the part of the array as defined by its parameters first and last. If a record matches the
search-criteria is found, the Person-object is added to a collector-object.

Note: class BasicSystem is placed within a module as described in chapter later in this chapter. This will require a minor
adjustment to this example in order to be able to execute it.

The collector-object is implemented as a Set-object:

collector: obj Set(Person)

This looks simple and straightforward, but we have now arrived at one of the major problems in writing parallel
programs. Since the three searcher-objects execute in parallel, two or more of them may invoke collector.insert at
the same time. This may imply that result of collector.insert has an unexpected result. The problem may be the
implementation of the insert method of Set. As we shall see in a later chapter, insert manipulates local references in
Set. This may not work if two or more searcher-objects does this at the same time. illustreres mere? OLM: hvis du har en
ide så vil det være fint.

Vi definerer race condition både her og i 12.3 Other issues in parallel programming, så skal koordineres.
Som eksempel real-life race conditions kan bruges en situation med nogle varer som kan sælges af to elleflere sælgere.
Hvis en sælger er igang med at sælge 3 specifikke items, som er den enste af deres slags, så kan det ikke nutte noget at
encnde sælger frigang med at sælge de samme 3 items.
Det kan væres booking af hotelværelse, rejser, flysæder, kunstgenstande, etc.

This problem of two or more parallel objects accessing the same objects at the same time is referred to as race conditions,
and as said above it is one of the critical issues of parallel programming. In the next section, we introduce a language
mechanism that makes it possible to avoid race conditions.

The monitor system

There exists a number of language mechanism that may help avoiding race conditions. In this section we use a monitor to
define a safe version of Collector.

A monitor is an object where it is only possible to invoke at most one method at a given time. That is two or more methods
cannot be invoked at the same time. A new class MonitorProcess is defined to represent parallel activity that makes use
of Monitor objects.

Class Monitor and class MonitorProcess are defined as part of the class MonitorSystem:

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 2
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

class MonitorSystem:
class MonitorProcess: BasicProcess

 start: :::
 :::

class Monitor:
 entry:
 :::
 :::

Class Monitor has a local method entry that must be used as a supermethod of all methods defined within in a subclass
of Monitor. Only one method that has entry as a supermethod can be executed at a given time. For methods that have
entry as supermethod, only one can be executed at a given time.

Note: As for BasicSystem, class MonitorSystem is placed within a module as described in section X and this will also
require a minor adjustment to this example in order to be able to execute it.

We may now define the collector object as a Monitor by encapsulating the Set-object within the Monitor:

collector: obj Monitor
 insert(p: ref Person): entry
 matches.insert(p)
 matches: obj Set(Person)

As can be seen, collector is subclassed from Monitor and insert is a submethod of entry. This guarantees that at
most one invocation of insert may be executed at a given time even though it may be called in parallel by the three
searcher processes.

A MonitorProcess in a MonitorSystem can only acces data-items defined locally in the MonitorProcess object, but
it may invoke methods of a Monitor object. The reason for this is to avoid race conditions if two or more MonitorProcess
object access the same objects at the same time.

In the simple searcher, the objects to be searched are in the global object records. This objects can thus not be accessed
by a MonitorProcess object. We thus have to organize the records in another way.

In this simple example, we split the records array object into three array objects and place one in each searcher object.
We define a general Searcher class that contains the records and the search method of a given MonitorProcess:

class Searcher: MonitorProcess
 records: obj Array(50000, Person)
 search(first, last: var integer):
 -"-
 inner(Searcher)

We may now define the searcher objects as subclassed from Searcher:

searcherA: obj Searcher
 search(1,50000)
searcherB: obj Searcher
 search(1,50000)
searcherC: obj Searcher
 search(1,50000)

In this way each Searcher object has its own records to be searched.

The search methods defined above is the same as the one defined in the aSimpleSearcher. The difference is that here
it is placed locally to the three searcher-objects. Each of them has its own search method although the code is identical
and defined in class Searcher, which is a superclass of all three objects.

We now add a MonitorProcess-object that presents the results of the searching. Such a MonitorProcess has to wait
for all three Searcher-objects to have finished searching their part of the objects.

presenter: obj MonitorProcess
 waitTermination(searcherA, SearcherB, SearcherC)

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 3
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

 collector.scan
 console.print("Found" + current.asText)

The method waitTermination waits until all its arguments searcherA, SearcherB, and SearcherC have terminated
execution.

A scan-method has been added to collector. It scans though all elements in the set of matches, and execute an inner
for each element:

collector: obj Monitor
 -"-
 scan:
 current: ref Person
 matches.scan
 this(scan).current := current
 inner(scan)

The complete system then consists of the following elements:

aSafeSearcher: obj MonitorSystem
class Searcher: -"-

 searcherA: obj Searcher
 search(1,50000)
 searcherB: obj Searcher
 search(1,50000)
 searcherC: obj Searcher
 search(1,50000)
 collector: obj Monitor
 insert(P: ref Person): entry
 -"-
 scan:
 -"-
 matches: obj Set(Person)
 presenter: obj MonitorProcess
 -"-
 searcherA.start
 searcherB.start
 searcherC.start
 presenter.start

As being said before, most of the examples in this book is for illustrating basic programming and modelling. In this example
we have not dealt with how to add content to the records of the Searcher object. Also organizing the records as done here
may not be the best solution in a practical system.

Using a bounded buffer

Computers in general have limited storage with respect to RAM and disk space, and programs have to take this into
account.

The next example is also in the domain of searching. We consider a number of clients that makes requests to a server for
searching Person-objects with specific values of its attributes, such as name and age above.

The overall structure of this system is:

usingBoundedBuffer: obj MonitorSystem
class Client: MonitorProcess

 mkRequest(field: var String, V: var String) -> R: ref Request:
 :::

class Request(sendedr: ref Client, field: var String, V: var String):
 :::
 ...
 clientA: obj Client("clientA")
 :::
 clientB: obj Client("clientB")
 :::

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 4
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

 clientC: obj Client("clientC")
 :::

 server: obj Monitor
 addRequest(R: ref Request): entry
 :::
 getRequest -> R: ref Request: entry
 :::
 requests: obj BoundedBuffer(#Request,100)

 Searcher: MonitorProcess
 decodeAndSearch(R: ref Request):
 ...
 :::
 searcherA: obj Searcher("searcherA")
 searcherB: obj Searcher("searcherB")
 searcherC: obj Searcher("searcherC")

The following code defines a class Client that may be used to specify the clients of the system:

class Client: MonitorProcess
 mkRequest(field, value: var String) -> R: ref
 Request:
 R := Request(this(Client),field, value)
 server.addRequest(r)
 inner(Client)
class Request(sender: ref Client, field, V: var String):
 ...
clientA: obj Client
 mkRequest("age","18-24")
 mkRequest("name","John Smith")
 ...
clientB: obj Client
 mkRequest("age","60-65")
 ...
clientC: obj Client
 ...

Class Client describes the general structure of a client submitting request to the server.
Class Request describes the structure of a request. It contais the sender of the Request, a field holding the
name of the attribute to search for, and a parameter V holding the value (or interval of values) that must match the
field.
The method mkRequest creates a Request and sends it to the server using server.addRequest(R).
Three sub of Client, clientA, clientB, and clientC subclassed from Client are declared, each submitting
different requests.

We implement the server as a Monitor that keeps track of the various requests.

server: obj Monitor
 addRequest(R: ref Request): entry
 request.insert(R)
 getRequest -> R: ref Request: entry
 R := requests.next
 requests: obj BoundedBuffer(100,Request)
 :::

The method addRequest, inserts the Request R in the array requests.
The method getRequest is used by a searcher to get a request. The requests-object is of type BoundedBuffer,
which is a list where a limited number of objects may be stored – in this case 100.

We have to define a new version of a searcher-object to be used in this example since it the searching is more complicated
than just searching for a person with an age between 18 and 24.

class Searcher: MonitorProcess
 decodeAndSearch(R: ref Request):

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 5
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

 ...
 cycle
 R: ref Request
 R := server.getRequest
 decodeAndSearch(R)

searcherA: obj Searcher
searcherB: obj Searcher
searcherC: obj Searcher

A Searcher-process retrieves a request from the Server. It then has to decode the data-items field and V to find out
what to search for. This is done by the method decodeAndSearch.

For a request with field = "age" and V = "60-65", it must read the string field to find out that it is the age attribute
that is to be used in the search. And it must decode the String “60-65” to find out that the age must be between 60 and
65. Finally the search method above must have the ages to search for defined as parameters. We don’t show the details
here.

For a request with field = "name" and "V = "John Smith", a similar decision must be made and another search-
method must be written to search for Person-objects where the name-attributes has the given value. Again we don’t show
the details.

Handling the capacity of the server

As mentioned, the Server stores the request in the requests-object, which can hold a maximum of 100 objects. A client
trying to add a Request must therefore check if the buffer is not full, and if it is, wait until some space is available.

The same is the case for a Searcher-object. When calling getRequest, the requests-buffer may be empty and thus no
Request can be returned to the Searcher. In this case the method getRequest must wait until a client inserts a
Request.

To handle this, a Monitor-object has a method wait that delays execution of an entry-method until a given condition
becomes true:

wait(condition)

We may use wait in the server-object as follows:

server: obj Monitor
 addRequest(R: ref Request): entry
 wait(not requests.full)
 request.insert(R)
 getRequest -> R: ref Request: entry
 wait(not requests.isEmpty)
 R := requests.next
 requests: obj BoundedBuffer(100,Request)

In the beginning of the addRequest-method, a wait(not requests.full) is inserted. The invocation
requests.full returns true if the buffer is full. The method wait simply delays the execution of addRequest until the
buffer is not full. This may happen if a Searcher-object removes a Request using getRequest.

In a similar way, a wait(not requests.isEmpty) is inserted in the beginning of getRequest. It delays execution of
getRequest until the buffer is not empty.

Organization of BasicSystem and MonitorSystem

In this section, we describe how the classes BasicSystem and MonitorSystem are organized in modules . This is of
course necessary to understand in order to be able to executed the above programs.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 6
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

Class BasicSystem is placed within the module BasicSystemLib:

BasiSystemLib: obj
class BasiscSystem:

class BasicProcess:
 :::

Class MonitorSystem is similar within a module MonitorSystemLib:

MonitorSystem: obj BasicSystemLib.BasicSystem
class MonitorSystem:

class MonitorProcess:
 :::

 class Monitor:
 :::

The necessary adjustments to the above examples implies that the programs must be subclassed from class BasicSystem
or class MonitorSystem.

The program aSimpleSearcher must thus be subclassed from class BasicSystemLib.BasicSystem:

aSimpleSearcher: obj BasicSystemLib.BasicSystem
 -"-

The program aSafeSearcher must be subclassed from class MonitorSystemLib.MonitorSystem:

aSafeSearcher: obj MonitorSystemLib.MonitorSystem
 -"-

Finally, usingBoundBuffer must also be subclassed from class MonitorSystemLib.MonitorSystem:

usingBoundedBuffer: obj MonitorSystemLib.MonitorSystem
 -"-

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 7
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

