OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Mgller-Pedersen

12.2-x Lotto example sketch — OLD
Description

The next example is an experiment on playing Lotto with two different strategies: choosing random numbers or playing the
same numbers each time.

In this simplified version of Lotto you have to guess seven different numbers in the interval from 1 to 34. You may submit
one bet each week. At the end of the week the Lotto system chooses randomly seven different winner numbers, and the
winning players are those that have submitted a bet with these winner numbers.

The players are represented by parallel processes, where each player for each week (if he/she is in mood for playing)
submit a bet to lotto. A bet is represented by an object of class Bet :

cl ass Pl ayer: MbonitorProcess
kind: ref String
nyBet: ref Bet
i f (inModForPl ayi ngSameNunbers) :then
kind := "sanme"
el se
kind := "randont
myBet =
Bet (cl ock. now, this(Player).kind,
sevenRandomNunber s)

cycle -- for each week

i f (inMbodForPlaying) :then

if (kind = "randonm') :then

nmyBet : =
Bet (¢l ock. now, this(Player).kind,
sevenRandonmNumber s)

| otto. submitBet (nyBet)

cl ock. wai t Aweek

In real life the players are interested in whether they win or not, as winning comes with money. As we are only interested in
what kind of strategy wins first/most, we represent the kind of players by a String with the kinds “random” and “same”. When
a winner is found we are only interested in the kind of the winning player. The bets are therefore represented by objects of
class Bet , with the kind of player and seven numbers. Bets are only valid in the week where they are made, so a bet also
has a value variable representing the time of the bet:

class Bet(tinelssued: var Ti neCf Day,
pl ayer Ki nd: var String,
nunbers: ref Array(7, |nteger):

Each week each player decides first if to play this week and second if to play seven random numbers or not. In the
experiment this is simply represented by two functions that use a random function that delivers a random value in a given
interval:

i nTheMbodFor Pl ayi ng -> m var Bool ean:
m : = randonm(0,1) <> 0

i nTheMbodFor Pl ayi ngSaneNurbers -> m var Bool ean:
m : = random(0,1) <> 0

The function sevenRandonmNunber s is also based on the r andomfunction:

sevenRandomNunbers -> srn: ref |ndexed(7, Integer):
i nx: var |nteger
srn := Array(7, |Integer)
next :

Page 1
© Copyright by Ole Lehrmann Madsen and Birger Mgller-Pedersen 2023.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Mgller-Pedersen

n := randon(1, 34)
if (srn.has(n)) :then
restart (next)

el se
srn. put (n):at[inx]
inx :=inx + 1

if inx <7 :then
restart (next)

The Lotto is represented by an object | ot t 0. This object keeps the bets being submitted, it has the winning bet, and the
deadline for submitting bets. As players in parallel submit bets by calling the method subni t Bet , the | ot t 0 object is
defined as a monitor with submi t Bet as an entry method. When a player has submitted a bet, it has to wait for a week,
represented by the method wai t Aneek:

| otto: obj Monitor
bets: obj Set(Bet)
wi nni ngBet : ref Bet
deadl i ne: var Ti meOf Day

clearBets: entry
bets. cl ear

subm tBet (b: ref Bet): entry
if ((b.tinmelssued <= deadline
) and
(b.tinmelssued >= (deadline - clock.oneWek) :then
bets.insert(b)

fi ndW nni ngBet s
noOf RandomW nners, noOf SameW nners: var

I nt eger
wi nni ngBet : = Bet (cl ock. now, "w nning bet",
sevenRandomNumnber s)
-- check if any bet matches w nni ngBet

bets. scan
if (current.nunbers =
Wi nni ngBet . nunbers) :then
if (current.playerKind "random') :then
noXxf RandomW nners : = noOf RandomW nners + 1
el se
noOF SameW nners : = noOf SameW nners + 1
-- print noOf Random nners, noCOf SameW nner s

The experiment is represented by a Basi cSyst emobject. It generates a number of Pl ayer objects, starts the lotto by
setting the deadline, and then starts the generated Pl ayer objects. It then repeatedly waits a week before finding winning
players, and then clear the bets and set a new deadline.

| ott oExperiment: obj MonitorSystem
-- all the classes, nethods and objects introduced above, i.e
-- Player, RandomNumbersPl ayer, SaneNunbersPl ayer, Bet
-- inTheModFor Pl ayi ng, inTheMbodFor Pl ayi ngSameNunber s
-- sevenRandomNunbers, lotto

maxNoCF Pl ayers: val 100000
i nx: var |nteger
pl ayers: obj Set (Pl ayer)

cycle -- generate players
if (inx < maxNoOF Pl ayers) :then
inx :=inx + 1

pl ayers.insert (Pl ayer)

-- starting lotto and the players:

| otto. deadline := clock.now + cl ock. oneWeek

-- deadline nust be set before starting the players
pl ayers. scan

Page 2
© Copyright by Ole Lehrmann Madsen and Birger Mgller-Pedersen 2023.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Mgller-Pedersen

current.start

cycle
cl ock. wai t Aneek
| otto.findWnningBets
| otto.cl earBets
| otto.deadl i ne : = cl ock. now + cl ock. one\Wek

The whole experiment relies on the availability of a clock that can deliver the time now (represented by a value of type

Ti meOf Day).

Vi skal sikkert fierne Date og TimeOfDay her da de er tidligere.
Og her er s& den bergmte AnyTime

cl ass Date(year, nonth, day: var integer): Value
setDate(y, m d: var integer):
year 1=y
month := m
day :=d
asString -> s: var String:
s :=year +"." + nmonth + "." + day

class Ti meOf Day(th: var Tinme. Hours): Val ue

in p: var Timedf Day
out r: var Time. Hours
r.magni tude := th.magnitude - p.th
class AnyTinme(d: var Date, td: var TinmeO Day(0 hours)):
in p: var AnyTi me(Date, TineO Day)
out r: var Tinme.Hours
r.magnitude := td.th.magnitude - p.td.th

cl ock: obj

now -> var t: TinmeO Day:

oneVéék -> var h: Time. Hours:
h :=7 * 24 hour

wai t Aneek:

+++ complete code:

Val ue

Er det BasicSystem eller MonitorSystem? Monitor bruges tidligere s& vel MonitorSystem?

| ott oExperiment: obj BasicSystem

sevenRandomNunbers -> srn: ref Indexed(7, Integer):
i nx: var |nteger
srn := Array(7, |nteger)
next :
n : = randon{1, 34)
if srn.has(n) :then
restart (next)
el se
srn.put(n):at[inx]
inx :=inx + 1
if inx <7 :then
restart (next)
i nTheMbodFor Pl ayi ng -> m var Bool ean
i: var Integer
i := random(0, 1)
m : = randon{0,1) <> 0
Page 3

© Copyright by Ole Lehrmann Madsen and Birger Mgller-Pedersen 2023.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Mgller-Pedersen

i nTheMbodFor Pl ayi ngSaneNurbers -> m var Bool ean:
i: var Integer
[randon{ 0, 1)
m : = randon(0,1) <> 0

class Bet(tinelssued: var Ti neC Day,
pl ayerKind: ref String, nunbers: ref I|ndexed(7, |nteger)

class Pl ayer: Process
kind: ref String
myBet: ref Bet
i f i nMbodFor Pl ayi ngSaneNunbers :then
kind := "sanme"
el se
kind : = "randont
myBet : =
Bet (cl ock. now, this(Player).kind,
sevenRandomNunber s)
cycle -- for each week
i f i nMbodFor Pl ayi ng :then
if (kind = "randonm') :then
nmyBet : =
Bet (¢l ock. now, this(Player).kind,
sevenRandonmNurmber s)
| otto. submit Bet (nyBet)
cl ock. wai t Aweek

| otto: obj Monitor
bets: obj Set(Bet)
wi nni ngBet: ref Bet
deadl i ne: var Ti meOf Day

clearBets: entry
bets. cl ear

submi tBet(b: ref Bet): entry
if ((b.tinmelssued <= deadline
) and
(b.timel ssued >= (deadline - clock.oneWek) :then
bets.insert(b)

fi ndW nni ngBet s
noOf RandomW nners, noOf SameW nners: var

| nt eger
Wi nni ngBet : = Bet (cl ock. now, "w nning bet",
sevenRandomNunber s)
-- check if any bet matches w nni ngBet

bets. scan
if (current.nunbers =
Wi nni ngBet . nunbers) :then

if (current.kind = "random') :then

noOf RandomW nners : = noOf RandomW nners + 1
el se

noCxf SameW nners : = noOf SaneW nners + 1

-- print noOf Random nners, noCOf SameW nner s

maxNoCf Pl ayers: val 100000
i nx: var |nteger
pl ayers: obj Set (Pl ayer)

cycle -- generate players
if (inx < maxNoOF Pl ayers) :then
inx :=inx + 1

pl ayers.insert (Pl ayer)

-- starting lotto and the players:

Page 4
© Copyright by Ole Lehrmann Madsen and Birger Mgller-Pedersen 2023.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Mgller-Pedersen

| otto.deadl i ne := cl ock. now + cl ock. oneWek
-- deadline nust be set before starting the players
pl ayers. scan

current.start

cycle
cl ock. wai t Aneek
| otto.findWnningBets
| otto.clearBets
| otto.deadl i ne := cl ock. now + cl ock. one\Week

Page 5
© Copyright by Ole Lehrmann Madsen and Birger Mgller-Pedersen 2023.

