
12.2-x Lotto example sketch – OLD

Description

The next example is an experiment on playing Lotto with two different strategies: choosing random numbers or playing the
same numbers each time.

In this simplified version of Lotto you have to guess seven different numbers in the interval from 1 to 34. You may submit
one bet each week. At the end of the week the Lotto system chooses randomly seven different winner numbers, and the
winning players are those that have submitted a bet with these winner numbers.

The players are represented by parallel processes, where each player for each week (if he/she is in mood for playing)
submit a bet to lotto. A bet is represented by an object of class Bet:

class Player: MonitorProcess
 kind: ref String
 myBet: ref Bet
 if (inMoodForPlayingSameNumbers) :then
 kind := "same"
 :else
 kind := "random"
 myBet :=
 Bet(clock.now, this(Player).kind,
 sevenRandomNumbers)

 cycle -- for each week
 if (inMoodForPlaying) :then
 if (kind = "random") :then
 myBet :=
 Bet(clock.now, this(Player).kind,
 sevenRandomNumbers)
 lotto.submitBet(myBet)
 clock.waitAweek

In real life the players are interested in whether they win or not, as winning comes with money. As we are only interested in
what kind of strategy wins first/most, we represent the kind of players by a String with the kinds “random” and “same”. When
a winner is found we are only interested in the kind of the winning player. The bets are therefore represented by objects of
class Bet, with the kind of player and seven numbers. Bets are only valid in the week where they are made, so a bet also
has a value variable representing the time of the bet:

class Bet(timeIssued: var TimeOfDay,
 playerKind: var String,
 numbers: ref Array(7, Integer):

Each week each player decides first if to play this week and second if to play seven random numbers or not. In the
experiment this is simply represented by two functions that use a random function that delivers a random value in a given
interval:

 inTheMoodForPlaying -> m: var Boolean:
m := random(0,1) <> 0

 inTheMoodForPlayingSameNumbers -> m: var Boolean:
m := random(0,1) <> 0

The function sevenRandomNumbers is also based on the random function:

sevenRandomNumbers -> srn: ref Indexed(7, Integer):
inx: var Integer
srn := Array(7, Integer)

 next:

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 1
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

n := random(1,34)
 if (srn.has(n)) :then

restart(next)
 :else

srn.put(n):at[inx]
 inx := inx + 1
 if inx < 7 :then

restart(next)

The Lotto is represented by an object lotto. This object keeps the bets being submitted, it has the winning bet, and the
deadline for submitting bets. As players in parallel submit bets by calling the method submitBet, the lotto object is
defined as a monitor with submitBet as an entry method. When a player has submitted a bet, it has to wait for a week,
represented by the method waitAweek:

 lotto: obj Monitor
 bets: obj Set(Bet)
 winningBet: ref Bet
 deadline: var TimeOfDay

 clearBets: entry
 bets.clear

 submitBet(b: ref Bet): entry
 if ((b.timeIssued <= deadline
) and
 (b.timeIssued >= (deadline - clock.oneWeek) :then
 bets.insert(b)

 findWinningBets
 noOfRandomWinners, noOfSameWinners: var
 Integer
 winningBet:= Bet(clock.now, "winning bet",
 sevenRandomNumbers)
 -- check if any bet matches winningBet
 bets.scan
 if (current.numbers =
 winningBet.numbers) :then
 if (current.playerKind = "random") :then
 noOfRandomWinners := noOfRandomWinners + 1
 :else
 noOfSameWinners := noOfSameWinners + 1
 -- print noOfRandomWinners, noOfSameWinners

The experiment is represented by a BasicSystem object. It generates a number of Player objects, starts the lotto by
setting the deadline, and then starts the generated Player objects. It then repeatedly waits a week before finding winning
players, and then clear the bets and set a new deadline.

lottoExperiment: obj MonitorSystem
 -- all the classes, methods and objects introduced above, i.e
 -- Player, RandomNumbersPlayer, SameNumbersPlayer, Bet
 -- inTheMoodForPlaying, inTheMoodForPlayingSameNumbers
 -- sevenRandomNumbers, lotto

 maxNoOfPlayers: val 100000
 inx: var Integer
 players: obj Set(Player)

 cycle -- generate players
 if (inx < maxNoOfPlayers) :then
 inx := inx + 1
 players.insert(Player)

 -- starting lotto and the players:
 lotto.deadline := clock.now + clock.oneWeek
 -- deadline must be set before starting the players
 players.scan

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 2
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

 current.start

 cycle
 clock.waitAweek
 lotto.findWinningBets
 lotto.clearBets
 lotto.deadline := clock.now + clock.oneWeek

The whole experiment relies on the availability of a clock that can deliver the time now (represented by a value of type
TimeOfDay).

Vi skal sikkert fjerne Date og TimeOfDay her da de er tidligere.
Og her er så den berømte AnyTime

class Date(year, month, day: var integer): Value
 setDate(y, m, d: var integer):
 year := y
 month := m
 day := d
 asString -> s: var String:
 s := year + "." + month + "." + day

class TimeOfDay(th: var Time.Hours): Value
 - :
 in p: var TimeOfDay
 out r: var Time.Hours
 r.magnitude := th.magnitude - p.th

class AnyTime(d: var Date, td: var TimeOfDay(0 hours)): Value
 - :
 in p: var AnyTime(Date, TimeOfDay)
 out r: var Time.Hours
 r.magnitude := td.th.magnitude - p.td.th

clock: obj
 now -> var t: TimeOfDay:
 ...
 oneWeek -> var h: Time.Hours:
 h := 7 * 24 hour

 waitAweek:
 ...

+++ complete code:
Er det BasicSystem eller MonitorSystem? Monitor bruges tidligere så vel MonitorSystem?

lottoExperiment: obj BasicSystem

sevenRandomNumbers -> srn: ref Indexed(7, Integer):
inx: var Integer
srn := Array(7, Integer)

 next:
n := random(1,34)

 if srn.has(n) :then
restart(next)

 :else
srn.put(n):at[inx]

 inx := inx + 1
 if inx < 7 :then

restart(next)

 inTheMoodForPlaying -> m: var Boolean:
 i: var Integer
 i := random(0,1)

m := random(0,1) <> 0

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 3
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

 inTheMoodForPlayingSameNumbers -> m: var Boolean:
 i: var Integer
 i := random(0,1)

m := random(0,1) <> 0

class Bet(timeIssued: var TimeOfDay,
 playerKind: ref String, numbers: ref Indexed(7, Integer)

class Player: Process
 kind: ref String
 myBet: ref Bet
 if inMoodForPlayingSameNumbers :then
 kind := "same"
 :else
 kind := "random"
 myBet :=
 Bet(clock.now, this(Player).kind,
 sevenRandomNumbers)
 cycle -- for each week
 if inMoodForPlaying :then
 if (kind = "random") :then
 myBet :=
 Bet(clock.now, this(Player).kind,
 sevenRandomNumbers)
 lotto.submitBet(myBet)
 clock.waitAweek

 lotto: obj Monitor
 bets: obj Set(Bet)
 winningBet: ref Bet
 deadline: var TimeOfDay

 clearBets: entry
 bets.clear

 submitBet(b: ref Bet): entry
 if ((b.timeIssued <= deadline
) and
 (b.timeIssued >= (deadline - clock.oneWeek) :then
 bets.insert(b)

 findWinningBets
 noOfRandomWinners, noOfSameWinners: var
 Integer
 winningBet:= Bet(clock.now, "winning bet",
 sevenRandomNumbers)
 -- check if any bet matches winningBet
 bets.scan
 if (current.numbers =
 winningBet.numbers) :then
 if (current.kind = "random") :then
 noOfRandomWinners := noOfRandomWinners + 1
 :else
 noOfSameWinners := noOfSameWinners + 1
 -- print noOfRandomWinners, noOfSameWinners

 maxNoOfPlayers: val 100000
 inx: var Integer
 players: obj Set(Player)

 cycle -- generate players
 if (inx < maxNoOfPlayers) :then
 inx := inx + 1
 players.insert(Player)

 -- starting lotto and the players:

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 4
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

 lotto.deadline := clock.now + clock.oneWeek
 -- deadline must be set before starting the players
 players.scan
 current.start

 cycle
 clock.waitAweek
 lotto.findWinningBets
 lotto.clearBets
 lotto.deadline := clock.now + clock.oneWeek

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 5
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

