
4.2 Array and for-loop

Description

A customer may have more than one account. In this section, we extend class Customer to keep track of the accounts of a
given customer.

We may use class Set for this purpose, but we use this example to introduce Array, which is another common collection
object. An Array-object is an indexed sequence of references to objects where each reference in the sequence may be
denoted by an integer index.

Accounts Array

Class Array is defined as follows:

class Array(range: var integer, class ElmType:< Object):
 put(R: ref ElmType):at[index: var integer]:
 ...
 get(index: var integer) -> R: ref ElmType:
 ...

The first parameter, range of Array is the number of elements in the Array.
The second paremeter, ElmType, is the type of the elements in the Array – similar to ElmType for class Set.
It has a method put:at with two parameters R and index. This method stores the reference at the position given
by the value of index.
It has a method get, which returns the reference stored at the position given by the parameter index.
As can be seen, put:at and get use another syntax for defining parameters than the one we have seen in
previous examples using standard brackets and comma to separate the parameters. This syntax is explained in
section .

The following example shows how we may use an Array-object, accounts. Below we add accounts as an attribute of
class Customer, but first we show how to use Array by means of a ghost object.

aGhost1: obj
 accounts: obj Array(3, Account)
 anAccountA, anAccountB : ref Account
 JohnSmithProfile: ref Customer -- skal vi bruge obj her?

 JohnSmithProfile := Customer("John Smith")
 anAccountA := Account(JohnSmithProfile)
 accounts.put(anAccountA):at[2]
 anAccountB := accounts.get[2]

The first item in the example above declares an Array-object with 3 elements (the first parameter) of type Account
(the second parameter).
The statement accounts.put(anAccountA):at[2] inserts the Account referred to by anAccountA as the
second element in the array.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 1
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

The statement anAccountB := accounts.get[2] assigns the second element in the array to the reference
anAccountB.

The situation at the end of aGhost1 is shown in the snapshot:

Image not found or type unknown

Accounts Array Example

An index may in general be an expression that evaluate to an integer value as shown in the ghost object below:

aGhost2: obj
 accounts: obj Array(3, Account)
 anAccountA, anAccountB, anAccountC : ref Account
 inx: var integer
 ... -- some code assigning references to anAccountA and anAccountB
 inx := 1
 accounts.put(anAccountA):at[inx]
 accounts.put(anAccountB):at[inx + 1]
 inx := 3
 anAccountC := accounts.get[inx - 2]

The object aGhost2 has an Array accounts with 3 elements of type Account, three reference variables
anAccountA, anAccountB, and an AccountC, and an integer variable inx.
The three dots ... stand for code not shown – see chapter .

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 2
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

The variable inx assigned the value 1.
The expression accounts.put(anAccountA):at[inx] assigns the reference hold by anAccountA to element
no. 1 in accounts, since the value of inx is 1.
The expression accounts.put(anAccountB):at[inx + 1] assigns the reference hold by anAccountB to
element no. 2 in accounts, since expression inx + 1 has the value 2.
The statement anAccountC := accounts.get[inx - 2] assigns element no. 1 in accounts to anAccountC
since expression inx - 2 has the value 3 (as inx is assigned the value 3 before the statement) – anAccountC will
thus refer to the same object as anAccountA.

If the index expression is not within the range of the array – here 1-3, the program execution will be terminated (aborted)
with an error message saying that there is an index error.

We may now extend class Customer with an array keeping track of the accounts of the customer:

class Customer(name: var String):
 addr: var String

 email: var String
 maxNoOfAccounts: val 10
 noOfAccounts: var integer
 accounts: obj Array(maxNoOfAccounts, Account)

In the example, we assume that a customer may have at most 10 accounts as represented by the constant integer value
maxNoOfAcounts. The integer variable noOfAccounts holds the number of accounts of the customer. An integer variable
like noOfAccounts has initially the value 0 (zero).

Next we add a method addAccount to class Customer:

class Customer(name: var String):
 -"-
 addAccount(acc: ref Account):
 noOfAccounts := noOfAccounts + 1
 if (noOfAccounts <= maxNoOfAccounts) :then
 accounts.put(acc):at[noOfAccounts]
 :else
 console.print(“Cannot add Account”)

The method has a parameter acc referring to the Account to be added. An if:then:else statement is used to test if it is
possible to add an account or if the limit of the maximum number of accounts has been reached in which case a message is
printed on the console.

The if:then:else statement is similar to the if:then statement as explained in section . The part after else is executed
if the condition is false. For a more detailed description see section on statements.

Next we add a method that calculates the sum of the balance on all accounts:

class Customer(name: var String):
 -"-
 balanceSum -> bal: var float:
 for (1):to(noOfAccounts):repeat
 bal := bal + accounts.get[inx].balance

The method makes use of a for-statement, for:to:repeat – also called for-loop, that iterates through the elements of the
array. For each value in the interval 1..noOfAccounts, the statement bal := bal + accounts.get[inx].balance
is executed. The variable inx has the value 1 in the first execution 2 in the second and so one and noOfAccounts in the
last execution. For a more detailed description see section .

The complete new version of class Customer is shown here:

class Customer(name: var String):
 addr: var String
 email: var String
 maxNoOfAccounts: val 10
 noOfAccounts: var integer

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 3
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

 accounts: obj Array(maxNoOfAccounts,Account)

 addAccount(acc: ref Account):
 noOfAccounts := noOfAccounts + 1
 if (noOfAccounts <= maxNoOfAccounts) :then
 accounts.put(acc):at[noOfAccounts]
 :else
 console.print(“Cannot add Account”)

 balanceSum -> bal: var float:
 for(1):to(noOfAccounts):repeat
 bal := bal + accounts.get[inx].balance

Array literal bør indføres her, men mangler et oplagt eksempel. Kan selvfølgelig bare vise et demo eksempel med fx 3
Accounts a la accounts := (acc1,acc2,acc3) men ikke ideelt.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 4
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

