
15.3 Implementing a Monitor System

Description

Here we will show how to implement a Monitor system using preemptive coroutines and Semaphore.

Below we show our first version of class Monitor:

class Monitor:
 entry:
 mutex.wait
 inner(entry)
 mutex.signal
 %private
 mutex: obj Semaphore(1)

A Monitor-object has a Semaphore attribute and a local method pattern, entry, which is to be used as a supermethod
for methods in subclasses of Monitor. As can be seen, entry has an inner(entry); mutex.wait is executed before
inner(entry) and mutex.signal is executed after inner(entry).

The Account class may be described as a subclass of Monitor in the following way:

class Account: Monitor
 deposit(amount: var float): entry
 balance := balance + amount
 withdraw(amount: var float): entry
 balance := balance - amount
 %private
 balance: var float

If anAccount refers to an Account-object, then execution of anAccount.deposit(200) has the effect that the
supermethod entry of deposit works like a wrapper around the statement balance := balance + amount. This
ensures that mutex.signal is executed before the statement and mutex.signal is executed afterwards. The same is
the case for execution of a anAccount.withDraw(300). All in all, using entry as a supermethod ensures that at most
one deposit or withdraw may be executed at the same time, which guarantees exclusive acces to data-items within the
Monitor object.

In section , Monitor is used as part of class that also defines a MonitorProcess class. We will show how to define such
a system. It will contain the elements shown below:

class MonitorSystem
class Monitor: ...
class MonitorProcess: ...

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 1
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

 %private
 scheduler: obj ...
 SQS: obj ProcessQueue

Class Monitor is defined as shown above. Class MonitorProcess is supposed to be a superclass of all parallel objects
in the MonitorSystem. The scheduler object handles scheduling of MonitorProcess-objects and SQS is a queue of
MonitorProcess-objects that are ready for being executed.

Class MonitorProcess may be defined as follows:

class MonitorProcess:
 start:
 status := ACTIVE
 SQS.insert(this(MonitorProcess))
 status: var integer
 inner(MonitorProcess)
 status := TERMINATED

A MonitorProcess has four attributes:

A start method that sets the status of the MonitorProcess object to ACTIVE.
An integer variable status holding the status of the MonitorProcess.
An inner-statement that implies execution of items in a subclass of MonitorProcess.
Finally a statement setting status to TERMINATED whereafter execution of the MonitorProcess object ends.

Next we describe the Scheduler object:

scheduler: obj
 active: ref MonitorProcess
 cycle
 active := SQS.next
 if (active <> none) :then
 active.attach(100)
 if (active.status = ACTIVE) then
 SQS.insert(active)

The scheduler has a data-item active that is a reference to the MonitorProcess object currently being executed.

Then it has a cycle-statement that forever executes:

A reference to the next MonitorProcess in the queue SQS of active MonitorProcess-objects is assigned to
active.
If there are no references in SQS, active will get the datum none.
If active is not none, the method active.attach(100) is invoked implying that execution of active is
resumed. If active has not bee executed before, execution starts from the beginning of active; if active has
been executed before ans execution has been suspended, execution is resumed after the point of suspension.
Active will be preemptively suspended after 100 time units, but it may also terminate before the 100 time units have
appeared.
If active is preemptively suspended, active.status = ACTIVE and active is re-inserted into SQS.
Otherwise active has terminated (status = TERMINATED) execution and thus not re-inserted into SQS.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 2
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

