OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Mgller-Pedersen

10.1.1 A simple expression grammar
Description

In this section, we extend the grammar example with code to represent a complete grammar, a parser and an evaluator.
The reader may skip this section and the subsequent ones on the expression parser and the abstract syntax tree during the
first reading of this book.

We use a grammar for describing aritemhetic expressions of digits using ' +' , ' *' and parentheses:

Start: <Exp>

<Exp> ::= <Exp> "+" <Terme | <Ternp

<Termp ::= <Terne "*" <Primary> | <Prinmary>

<Primary> ::= <Nunber> | "(" <Exp> ")"

<Nunber> ::= <Number> <Digit> | <Digit>

<D gl t > : : = n OII | n 1II | n 2II | n 3II | n 4II | n 5II | n 6II | n 7II | n 8II | n gll

The start symbol of the grammar is the nonterminal <Exp>.

The nonterminal symbols are: <Exp>, <Ter n», <Pri mar y>, <Nunber >, and <Di gi t >.
The terminal symbols are: " +","*" " (",")" and the digits " 0" —"9".

We declare an Expr essi onG anmar as a sub of G anmar :

Expressi onG ammar: obj G anmmar
-- decl aration of symnbols
-- declaration of rules
-- specification of start synbol

The symbols are declared as follows:

expSy: obj Nontermninal ("Exp")

ternBy: obj Nonterm nal ("Term')
primarySy: obj Nonterm nal ("Prinary")
nunber Sy: obj Nonterm nal (" Nunber")
digitSy: obj Nonterminal ("Digit")
add: obj Term nal ("+"

mult: obj Terminal ("*")

leftB: obj Termnal ("(")

rightB: obj Termnal (")")

To generate the rules, we introduce a method for each nonterminal. The one for <Exp> looks as follows:

nkExpRul e: addRul e( expSy)
S: ref Synbol Li st
S = Synbol List.insertList((ExpSy, add, t er nBy))
R alternatives.insert(Aternative(S))
S : = Synbol List.insertList(ternBy)
alt := Alternative(S)
R alternatives.insert(alt)

As can bee seen, nkExpRul e is a sub of addRul e, which we have added to class G- ammar . In addition, we have added
class Synbol Li st with a pri nt method:

cl ass G ammar:

cl ass Synbol Li st: O deredLi st (#Synbol)
print:
scan
current. print

Page 1
© Copyright by Ole Lehrmann Madsen and Birger Mgller-Pedersen 2023.



OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Mgller-Pedersen

addRul e(L: ref Nonterminal):

R ref Rule
R:= Rule
RleftSide :=1L
i nner (addRul e)
rules.insert(R)

The method addRul e has the leftside of the rule to be added a s a parameter. It generates a Rul e-object and assign its
reference to R, and assigns the | ef t Si de of R. Then it executes i nner (addRul e) implying that the mainpart of
nmkExpRul e is executed. When returning from inner, the Rul e Ris inserted into the list of rules.

The expression Synbol Li st.insertLi st (( ExpSy, add, t er nSy) ) may need an explanation:

1.
2.
3.

First Synboli st is evaluated creating a Synbol Li st -object returning a reference to this newly created object.
Theni nsertLi st (( ExpSy, add, t er nBy) ) is invoked on the reference to the new Synbol Li st -object.
The parameter of i nsert Li st is an array and the argument of the invocation is the array-literal (??7?)

(ExpSy, add, ternBy) . I nsert Li st inserts each element of the array in the newly generated Synbol Li st -
object.

To complete the generation of Expr essi onG amrer , we may add methods similar to nkExpRul e for the other
nonterminals, but leaves this an exercise for the reader. The Expr essi onGr anmrer then looks as follows:

Expr essi onG anmar: obj G anmar

decl arati on of synbols

ExpSy: obj Nontermal ("Exp")

LL.decl aration of rules
nkExpRul e: addRul e( ExpSy)

mkTer mRul e:  addRul e( Ter ny)

mkPri maryRul e: addRul e( Pri marySy)

nkl\hﬁ‘berRuI e: addRul e( Number Sy)

mkDi gi t Rul e addRul e( Di gi t Sy)

-- ébécifi cation of start synbol
start := ExpSy
nkExpRul e

Parser and abstract syntax tree

Next we show how to write a parser for the expressions of our grammar and how to represent an expression by means of
an abstract syntax tree. The reader may skip theses sections during a first reading.

Page 2

© Copyright by Ole Lehrmann Madsen and Birger Mgller-Pedersen 2023.



