
8.2 Submethods

Description

In this section, we introduce submethods, which makes it possible to organise methods in a hierarchy similar to a class
hierarchy using subclasses. As for subclass and superclass, submethod and supermehtod are dual terms. A submethod is
a method that has another method as a supermetod, and thus a supermethod is a method being used to define
submethods.

One primary use of methods as supermethods is to define new control abstractions, which may be used as control
structures like if-then, etc. In chapter , we show examples of how to define such control abstractions, and chapter have
further examples.

In section we introduced class Transaction and augmented deposit and withdraw to record each deposit and
withdraw on a given Account:

deposit(amount: var float):
 balance := balance + amount
 transactions.insert(
 Transaction("deposit", clock.today, clock.now, amount))
withdraw(amount: var float) -> newB: var
 float:
 balance:= balance - amount
 transactions.insert(
 Transaction("withdraw", clock.today, clock.now, amount))

They both invoke transactions.insert with almost identical arguments. Both deposit and withdraw perform
transactions on the Account and we would therefore like to reflect this in the model of the bank account.

To do this, we introduce a common supermethod transact:

transact(amount: var float):
 theTransaction: ref Transaction
 theTransaction := Transaction("", clock.today, clock.now, amount))
 inner(transact)
 transactions.insert(theTransaction)

The method transact takes care of recording the transactions in the transactions object. It generates a
Transaction object and assigns it to the reference variable theTransaction. Then it executes an inner(transact),
which has the effect that possible statements in submethods of transact are executed. We explain inner in section
below.

We may now rewrite deposit and withdraw to become submethods of transact:

deposit: transact
 balance := balance + amount
 theTransaction.what := “deposit”
withdraw: transact
 balance := balance – amount
 theTransaction.what := “withdraw”

By writing transact after deposit: and withdraw: both are defined as submethods of transact.

It is the same mechanism as for classes and subclasses; properties of transact becomes properties of both deposit
and withdraw, including both data-items and statements.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 1
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

It is therefore illustrated similarly, methods, however, with another color than classes.

The effect of this is that the code in transact works as a wrapper around the code in deposit and withdraw. Invocation
of deposit and withdraw starts by execution of the statements in transact; here execution of inner(transact)
implies that the statements in deposit and withdraw are executed; finally the statements after inner(transact) are
executed.

In the next section, we give a more detailed description of inner.

Method descriptor with a supermethod

The following figure shows that the method descriptor for deposit includes its supermethod transact:

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 2
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

