
10.2.1 Booking of flights

Description

In order to support booking of flights we need that FlightRoute is extended with scheduledFlightTime, as this one of
the criteria people use when booking:

class FlightRoute(flightNumber, origin, destination: var String):
scheduledDepartureTime: var TimeOfDay

 scheduledArrivalTime: var TimeOfDay
 flights: obj OrderedList(Flight)

-"-
scheduledFlightTime -> sft: var

 Time.Hours:
 sft := scheduledArrivalTime - scheduledDepartureTime

Objects of class Flight are created as soon as it is possible to make bookings on this flight, typically some months before
scheduled departure. At that time the departureDate is set. For this purpose, the class FlightRoute will have the
method createFlight:

class FlightRoute(flightNumber, origin, destination: var String):
 -:-
 createFlight(d: var Date):
 f: ref Flight
 f := Flight(d)
 f.departureTime := scheduledDepartureTime
 f.arrivalTime := scheduledArrivalTime
 flights.insert(f)

Booking is based upon choosing origin and destination airports, together with a date. In practise the airline will provide
options for the given date plus/minus a couple of day; the following simply gives the flights at just one date.

For simplicity we have excluded the handling of seats, but we do that in section . Given origin and destination airports, and
a date, we define a method flightsForBooking for delivering a list of the actual flights. The list delivered by this method
will form the basis for a website where the Flight information is displayed together with e.g. price, in a form that makes it
possible to select one of the flights and reserve seats.

flightsForBooking(from, to: var String, d: var Date)
 -> flights: ref OrderedList(Flight):
 flights := timeTable.flightsFromToAt(from, to, d)

This is based on a method flightList in the timeTable:

timeTable: obj
 -"-
 flightsFromToAt(from, to: var String, d: var Date)
 -> flights: ref OrderedList(Flight):
 routesFromTo(from, to).scan
 current.flights.scan
 if (current.date = d) :then flights.insert(current)

which in turn is based on a method routeList, also in timeTable:

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 1
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

timeTable: obj
 -"-
 routesFromTo(from, to: var String)
 -> routes: ref OrderedList(FlightRoute):
 entries.scan
 if (current.origin = from and current.destination = to)
 :then routes.insert(current)

Note that the call routeList(from, to) in flightList delivers an ordered list of references to FlightRoute objects.
As an OrderedList has a scan method, the statement

 routes(from, to).scan
 current.flights.scan
 if (current.date = d) :then flights.insert(current)

describes the invocation of a singular method object with routes(from, to).scan as super method. The singular
method has one statement which in turn is a singular method with current.flights.scan as super method. In the
innermost scanning of the flights list, each element (current), where date = d, is inserted in flights.

So, in summary, the method routes finds all the FlightRoute objects that matches the origin/destination airports and
delivers this as a list. For each of the FlightRoute objects in this list, scanning the flights list finds the list of Flight
objects with the right departure date.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 2
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

