OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Mgller-Pedersen

10.2.1 Booking of flights
Description

In order to support booking of flights we need that Fl i ght Rout e is extended with schedul edFl i ght Ti e, as this one of
the criteria people use when booking:

class FlightRRoute(flightNunber, origin, destination: var String):
schedul edDepartureTi ne: var Ti meO Day
schedul edArrival Ti ne: var Ti meOf Day
flights: obj OrderedList(Flight)

schedul edFlight Time -> sft: var
Ti me. Hour s:
sft := schedul edArrival Ti me - schedul edDepartureTi ne

Objects of class Fl i ght are created as soon as it is possible to make bookings on this flight, typically some months before
scheduled departure. At that time the depar t ur eDat e is set. For this purpose, the class Fl i ght Rout e will have the
method cr eat eFl i ght :

class Flight Route(flightNunber, origin, destination: var String):

createFlight(d: var Date):
f: ref Flight
f := Flight(d)
f.departureTine : = schedul edDepartureTi ne
f.arrival Time : = schedul edArrival Ti me
flights.insert(f)

Booking is based upon choosing origin and destination airports, together with a date. In practise the airline will provide
options for the given date plus/minus a couple of day; the following simply gives the flights at just one date.

For simplicity we have excluded the handling of seats, but we do that in section . Given origin and destination airports, and
a date, we define a method f | i ght sFor Booki ng for delivering a list of the actual flights. The list delivered by this method
will form the basis for a website where the Fl i ght information is displayed together with e.g. price, in a form that makes it
possible to select one of the flights and reserve seats.

flight sForBooki ng(from to: var String, d: var Date)
-> flights: ref OrderedList(Flight):
flights := tinmeTable.flightsFroniloAt(from to, d)

This is based on a method f | i ght Li st intheti neTabl e:

ti meTabl e: obj
flightsFromloAt(from to: var String, d: var Date)
-> flights: ref OrderedList(Flight):
rout esFronifo(from to).scan
current.flights.scan
if (current.date = d) :then flights.insert(current)

which in turn is based on a method r out eLi st, alsointi nmeTabl e:

Page 1
© Copyright by Ole Lehrmann Madsen and Birger Mgller-Pedersen 2023.



OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Mgller-Pedersen

ti meTabl e: obj

rout esFronmro(from to: var String)
-> routes: ref O deredList(FlightRoute):
entries.scan
if (current.origin = fromand current.destination = to)
:then routes.insert(current)

Note that the call rout eLi st (from to) inflightList delivers an ordered list of references to Fl i ght Rout e objects.
As an Or der edLi st has a scan method, the statement

routes(from to).scan
current.flights.scan
if (current.date = d) :then flights.insert(current)

describes the invocation of a singular method object with r out es(from t o). scan as super method. The singular
method has one statement which in turn is a singular method with current . fI i ght s. scan as super method. In the
innermost scanning of the f | i ght s list, each element (current ), where date = d,isinsertedinfli ghts.

So, in summary, the method r out es finds all the FlI i ght Rout e objects that matches the origin/destination airports and
delivers this as a list. For each of the Fl i ght Rout e objects in this list, scanning the f | i ght s list finds the list of FI i ght
objects with the right departure date.

Page 2
© Copyright by Ole Lehrmann Madsen and Birger Mgller-Pedersen 2023.



