
10.2.2 Status of flights

Description

In order to provide status on flights, we extend the first definition of class Flight with a couple of data-items, and later by
some methods that provide the status:

class FlightRoute(FlightNumber, origin, destination: var String):
scheduledDepartureTime: var TimeOfDay

 scheduledArrivalTime: var TimeOfDay
 -"-

class Flight(departureDate: var Date):
 departureTime: var TimeOfDay
 arrivalTime: var TimeOfDay:
 flightTime: -> ft: var Time.Hours
 ft := arrivalTime - departureTime
 delayed: var Boolean
 delayDeparture(newTime: var
 TimeOfDay):
 -- this is called in case the departure is delayed
 delayed := True
 departureTime := newTime
 delay -> period: var Time.Hours:
 period := arrivalTime – scheduledArrivalTime

 cancelled: var Boolean
 cancel:
 cancelled := True
 hasArrived: var Boolean
 hasTakenOff: var Boolean

In the event of cancellation, the method cancel is called.

At take off, departureTime is set to the time of take off, hasTakenOff is set to True, and hasArrived is set to False.
While flying the attribute arrivalTime is set based on weather condition and the landing condition of the destination
airport. It is therefore assumed that this is set based on real time information from the plane. At arrival, hasArrived is set
to True and hasTakenOff to False.

Status of flights are provided in two different ways, either given the origin/destination airport at a given date, or given the
name of the flight route, e.g. SK1926.

The method departureStatus defined below is called with some interval before take off, to provide the text that may be
displayed:

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 1
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

class Flight(departureDate: var Date):
 -"-
 departureStatus -> info: var String:
 info := ("Flight " + FlightNumber + " at: " + departureDate.asString)
 if cancelled :then
 info := info + "is cancelled"
 :else
 if delayed :then
 info := info + "Estimated departure time: "+
 departureTime +
 " expected arrival time: " +
 (departureTime + flightTime)
 :else
 info := info + " On schedule: " +
 scheduledDepartureTime.t.magnitude

The next method is called after take off:

class Flight(departureDate: var Date):
 -"-
 arrivalStatus -> info: var
 String:
 info := ("Flight " + name + " at: " + departureDate.asString)
 info := info + "Departed at: "+ departureTime
 if (not hasArrived) :then info := info + " expected at: " + arrivalTime
 :else
 info := info + " arrived at: " + ArrivalTime +
 " delayed: " + delay

Given the above status methods in Flight, we have three ways of selection which flights we want the status: for all flights
in all flight routes of a time table, for flights departing or arriving from a given airport at a given date, or flights of a given
route at a given airport and date.

Status of flights in the time table

Based upon the entries in the time table, flight status for all flights is provided by the following method:

showFlightStatus:
 timeTable.scanTimeTable
 fr: ref FlightRoute
 fr := current
 fr.scan
 if (not hasTakenOff) :then
 currentFlight.departureStatus.print
 :else
 currentFlight.arrivalStatus.print
 newline	

The method showFlightStatus is a submethod of the method scanTimeTable in timeTable. The method
scanTimeTable scans the entries list of FlightRoute objects; for each FlightRoute, held by fr, a singular
method being a submethod of fr.scan scans the Flight objects of the flights list in the FlightRoute held by fr.

As described above, the method showFlightStatus is based upon a scanTimeTable method in timeTable:

timeTable: obj
 entries: obj OrderList(FlightRoute)
 scanTimeTable:
 current: ref FlightRoute
 entries.scan
 this(scanTimeTable).current := current
 inner(scanTimeTable)

As explained before, the inner(scanTimeTable) is executed for each element in entries, and what is executed is the

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 2
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

statements of the showFlightStatus submethod of timeTable.scanTimeTable

The above is in turn based upon a scan method of FlightRoute, scaning all the Flight objects of the list flights:

class FlightRoute(flightNumber, origin, destination: var String):
 -"-
 scan:
 currentFlight: ref Flight
 flights.scan
 currentFlight := current
 inner(scan)

From/to a given airport, at a given date

The following method delivers the list of flights from a given airport at a given date:

fromAirport(ap: var String, d: var Date)
 -> flights: ref OrderedList(Flight):

 timeTable.routesFrom(ap).scan
 current.flights.scan
 if (current.date = d) :then
 flights.insert(current)

This is based upon the method routesFrom in timeTable, delivering the list of routes departing from a given airport:

timeTable: obj
 -"-
 routesFrom(ap: var String) -> routes: OrderedList(FlightRoute):
 entries.scan
 if (current.origin = ap :then
 routes.insert(current)

It is left as a simple exercise to make the method that delivers the list of flights to a given destination airport at a given date.

Answer:

toAirport(ap: var String, d: var Date)
 -> flights: ref OrderedList(Flight):
 timeTable.routesTo(ap).scan
 current.flights.scan
 if (current.date = d) :then
 flights.insert(current)

based upon:

timeTable: obj
 -"-
 routesTo(ap: var String) -> routes: OrderedList(FlightRoute):
 entries.scan
 if (current.destination = ap :then
 routes.insert(current)

Before the list of Flight objects delivered by these two methods are used for producing the status website, the list
delivered by fromAirport should be sorted according to departure time, while the list of Flight objects delivered by
toAirport should be sorted according to arrival time.

Given these two lists of Flight objects, the status website can produce the two strings delivered by the methods
departureStatus and arrivalStatus.

fromAirport("OSL", Date(6, 6, 2024)).scan
 current.departureStatus.print
fromAirport("OSL", Date(6, 6, 2024)).scan
 current.arrivalStatus.print

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 3
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

fromAirport("ARR", Date(6, 6, 2024)).scan
 current.departureStatus.print
fromAirport("ARR", Date(6, 6, 2024)).scan
 current.arrivalStatus.print

Given the flight number, airport, and a given date

The following method produces the list of flights given a certain route, from a given airport at a certain date:

onFlightNumberFrom(fn: var String, from: var String d: var Date)
 -> flights: ref OrderedList(Flight):
 theRoute: ref FlightRoute
 theRoute := timeTable.lookupRoute(fn)
 if theRoute.origin = from :then
 theRoute.flights.scan
 if (current.date = d) :then flights.insert(current)

This is based on a simple lookupRoute in TimeTable:

timeTable: obj
 entries: obj OrderList(FlightRoute)
 scanTimeTable:
 current: ref FlightRoute
 entries.scan
 this(scanTimeTable).current := current
 inner(scanTimeTable)

lookupRoute(fn: var String) -> theRoute: ref FlightRoute: scanTimeTable
 if current.flightNumber = fn :then
 theRoute := current
 leave(lookupRoute)

It is left as a simple exercise to make the method that produces the list of flights given a certain route, to a given airport at a
certain date:

Answer:

onFlightNumberTo(fn: var String, to: var String d: var Date)
 -> flights: ref OrderedList(Flight):
 theRoute: ref FlightRoute
 theRoute := timeTable.lookupRoute(fn)
 if theRoute.destination = to :then
 theRoute.flights.scan
 if (current.date = d) :then flights.insert(current)

Given these two lists of Flight objects, the status website can produce the two strings delivered by the methods
departureStatus and arrivalStatus.

onFlightNumberFrom("SK1926", "ARR" Date(6, 6, 2024)).scan
 current.departureStatus.print
onFlightNumberTo("SK1926", "OSL" Date(6, 6, 2024)).scan
 current.arrivalStatus.print

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 4
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

