
17.2 Interface-like aspects

Description

The addressable aspect in the previous section was an example of a general aspect with both data-items and methods.

The following example illustrates aspects that only have methods. In other languages this kind of aspects are defined by a
special interface definition, but we will define also these kinds of aspects by means of classes. Usually interface only have
method signatures, i.e. name, parameters and return type, while aspects used for interface may have methods with more
than signatures.

We start out by the simple aspect of being printable:

class printable:
   print:<  
      inner(print)

Different classes of objects may have a printable aspect. Here we define that Person objects are printable:

class Person(name: var String):
   asPrintable: obj Printable
      print::
         name.print

Because the description of asPrintable is nested within Person, the data item name of Person is visible, and it is
therefore possible to extend print to print the name.

A Person object are printed like this:

JohnSmith: ref Person
JohnSmith := Person("John Smith")
...
JohnSmith.asPrintable.print

This will not surprisingly print “John Smith”. A more interesting example is the case where we have a set of Person objects
and apply asPrintable.print to all of objects in this set:

persons: obj Set(Person)
-- insert Person objects in this set, e.g.:
persons.insert(Person("John Smith"))
persons.insert(Person("Liza Jones"))
persons.insert(Person("Mary Pole"))
...
persons.scan
   current.asPrintable.print

The same effect could have been obtained by defining Person as a subclass of Printable, but that would classify 
Person to be Printable, and that is not what we want to express. Subclassing works well for classification, but for
aspects we typically would like to have that a class like Person can have more than one aspect.

Suppose we also have the notion of being movable:

class Movable: 
   move(newAddr: ref Address):
      inner(move)

then Person could also be movable:

class Address:
   -"-

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 1
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.



   print:<
      -"-

class Person(name: var String): 
   addr: obj Address

   asPrintable: obj Printable
      print::
         name.print
         address.print

   asMovable: obj Movable
      move::
         addr.change(newAddr)

With the above class definitions, the properties of Printable (in this case just the method print) is also a property of 
Person, although via the name asPrintable. Correspondingly for move of Movable:

Joe: ref Person
...
Joe := Person("Joe")
Joe.asPrintable.print
Joe.asMovable.move(Address("Norway","Oslo","Røahagan", 33)) 

As mentioned, the above aspects, Printable and Movable, are example of interfaces in other languages, with only
methods. As the methods print and move are defined independently of Person (or other classes that should be 
Printable and Movable, interfaces usually do not have any statements describing their actions. This is not the case for
aspects that work as interfaces.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 2
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.


