
10.2.3 Status of Flights

Description

In order to provide status on flights, we extend the first definition of class Flight:

class Route(name, origin, destination: ref String):
 scheduledDepartureTime: var TimeOfDay
 scheduledArrivalTime: var TimeOfDay

class Flight(departureDate: var Date):
 seats: ...
 departureTime: var TimeOfDay
 -- before take off: estimated departure time
 -- after take off: actual departure time
 arrivalTime -> at: var TimeOfDay:
 -- before take off: estimated arrival time
 -- after take off: actual arrival time
 at := departureTime + scheduledFlyingTime
 flyingTime: -> ft: var Time.Hours
 ft := arrivalTime - departureTime
 delayed: var Boolean
 delayDeparture(newTime: var
 Time):
 -- this is called in case the departure is delayed
 delayed := True
 departureTime := newTime
 cancelled: var Boolean
 cancel:
 cancelled := True
 hasArrived: var Boolean
 hasTakenOff: var Boolean
 delay -> period: var Time.Hours:
 period := arrivalTime – scheduledArrivalTime

The scheduled arrival time is common to all flights on this route, while the arrival time of a flight is represented by a method
the compute its arrival time by

arrivalTime -> at: var TimeOfDay:
 at := departureTime + scheduledFlyingTime

where scheduledFlyingTime is the property of the enclosing Route object and therefore visible in Flight).

If the flight is delayed, the method delayDeparture of the actual Flight object is called, with the new time as
parameter. In addition to setting DepartureTime to represent the estimated departure time, delayed is set to True.

In the event of cancellation, the method cancel is called.

At take off, departureTime is set to the time of take off, hasTakenOff is set to True, and hasArrived is set to False.
While flying the attribute arrivalTime is set based on weather condition and the landing condition of the destination
airport. It is therefore assumed that this is set based on real time information from the plane. At arrival, hasArrived is set
to True and hasTakenOff to False. The actual delay is computed from the estimated arrival time (set while flying) and
the scheduled arrival time.

The following illustration shows how nesting is used to compute the delay. By nesting the Flight class in the Route class,
the attributes of Route are directly visible in class Flight. The method delay (in class Flight) may therefore compute
the delay of the flight by subtracting the scheduledarrivalTime (in the enclosing Route) from the local Flight
 property ArrivalTime:

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 1
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

+++

Status of flights are provided in two different ways, either given the origin/destination airport at a given date, or given the
name of the route, e.g. SK1926.

The method departureStatus defined below is called before take off of the flight:

class Flight(departureDate: var Date):

 departureStatus -> info: var
 String:
 -- this is called before the flight has taken off
 info := ("Flight " + name + " at: " + departureDate.asString)
 if departureDelayed :then
 info := info + "Estimated departure time: "+ estimatedDepartureTime +
 " expected arrival time: " + (DepartureTime + flyingTime)
 :else
 info := info + " On schedule: " +
 F2S(scheduledDepartureTime.t.magnitude)

The next method is called after take off:

class Flight(departureDate: var Date):

 arrivalStatus -> info: var
 String:
 -- this is called when the flight has taken off
 info := ("Flight " + name + " at: " + departureDate.asString)
 info := info + "Departed at: "+ departureTime if (not hasArrived) :then
 info := info + " expected at: " + arrivalTime
 :else

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 2
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

 info := info + " arrived at: " + ArrivalTime +
 " delayed: " + delay

Based upon the entries in the time table, flight status is provided by:

showFlightStatus:
 timeTable.scanTimeTable
 r: ref Route
 r := current
 r.scan
 if (not hasTakenOff) :then
 currentFlight.departureStatus.print
 :else
 currentFlight.arrivalStatus.print
 newline	

This is based upon a scanTimeTable method:

timeTable: obj
 entries: obj OrderList(Route)
 scanTimeTable:
 current: ref Route
 entries.scan
 this(scanTimeTable).current := current
 inner(scanTimeTable)
 lookupRoute(routeId: var String) -> theRoute: ref
 Route:
 entries.scan
 if (current.name = routeId):then
 theRoute := current
 leave(LookupRoute)

which in turn is based upon a scan of routes:

class Route(name, origin, destination: ref String):
 -- as above
 scan:
 currentFlight: ref Flight
 flights.scan
 currentFlight := current
 inner(scan)

showFlightStatus:
 timeTable.scanTimeTable
 r: ref Route
 r := current
 r.scan
 if (not hasTakenOff) :then
 currentFlight.departureStatus.print
 :else
 currentFlight.arrivalStatus.print
 newline	

For the purpose of providing status of flights we have two ways to ask for that: flights departing or arriving from a given
airport at a given date, or flights of a given route at a given airport and date.

From/to a given airport, at a given date

The following method delivers the list of flights for giving the status of all flights with a given origin airport at a given date:

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 3
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

fromAirport(ap: var String, d: var Date)
 -> flightList: ref OrderedList(Flight):
 routeList: obj OrderedList(Route)
 timeTable.entries.scan
 if (current.origin = ap :then
 routeList.insert(current)
 routeSet.scan
 current.flights.scan
 if (current.date = d) :then
 flightList.insert(current)

It is left as a simple exercise to make the method that delivers the list of flights for giving the status of all flights with a given
destination airport at a given date.

Svar:

toAirport(ap: var String, d: var Date)
 -> flightList: ref OrderedList(Flight):
 routeList: obj OrderedList(Route)
 timeTable.entries.scan
 if (current.destination = ap :then routeList.insert(current)
 routeList.scan
 current.flights.scan
 if (current.date = d) :then flightList.insert(current)

Before the list of Flight objects delivered by these two methods are used for producing the status website, the list
delivered by fromAirport should be sorted according to departure time (in fact scheduled departure time, as this should
be displayed together with the actual departure time), while the list of Flight objects delivered by toAirport should be
sorted according to arrival time.

Given these two lists of Flight objects, the status website can produce the two strings delivered by the methods
departureStatus and arrivalStatus.

fromAirport("OSL", Date(+++,+++, +++)).scan
 current.departureStatus.print
fromAirport("OSL", Date(+++, +++)).scan
 current.arrivalStatus.print

fromAirport("ARR", Date(+++, +++, +++)).scan
 current.departureStatus.print
fromAirport("ARR", Date(+++, +++, +++)).scan
 current.arrivalStatus.print

Given the Route name, airport, and a given date

The following method produces the list of flights given a certain route, from a given airport at a certain date:

onRouteNameFrom(n: var String, from: var String d: var Date)
 -> flightList: ref OrderedList(Flight):
 theRoute: ref Route
 theRoute := timeTable.lookupRoute(n)
 if theRoute.origin = from :then
 theRoute.flights.scan
 if (current.date = d) :then flightList.insert(current)

It is left as a simple exercise to make the method that produces the list of flights given a certain route, to a given airport at a
certain date:

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 4
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

onRouteNameTo(n: var String, to: var String d: var Date)
 -> flightList: ref OrderedList(Flight):
 theRoute: ref Route
 theRoute := timeTable.lookupRoute(n)
 if theRoute.origin = to :then
 theRoute.flights.scan
 if (current.date = d) :then flightList.insert(current)

Given these two lists of Flight objects, the status website can produce the two strings delivered by the methods
departureStatus and arrivalStatus.

onRouteNameFrom("SK1926", "ARR" Date(+++, +++, +++)).scan
 current.departureStatus.print
onRouteNameTo("SK1926", "OSL" Date(+++, +++, +++)).scan
 current.arrivalStatus.print

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 5
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

