OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Mgller-Pedersen

10.2.3 Status of Flights
Description

In order to provide status on flights, we extend the first definition of class Fl i ght :

cl ass Route(nane, origin, destination: ref String):
schedul edDepartureTi ne: var Ti meOf Day
schedul edArrival Ti me: var Ti meOf Day
class Flight(departurebDate: var Date):
seats: ...
departureTi me: var Ti meOf Day
-- before take off: estimated departure time
-- after take off: actual departure tine
arrival Time -> at: var Ti neCf Day:
-- before take off: estimated arrival time
-- after take off: actual arrival tine

at := departureTine + schedul edFl yi ngTi me
flyingTime: -> ft: var Tine. Hours
ft := arrival Time - departureTine

del ayed: var Bool ean
del ayDepart ur e(newTi ne: var

Tine):
-- this is called in case the departure is del ayed
del ayed : = True
departureTi me : = newli nme
cancel | ed: var Bool ean
cancel
cancel led : = True

hasArrived: var Bool ean
hasTakenOf f: var Bool ean
delay -> period: var Tine.Hours:
period := arrival Time — schedul edArrival Ti ne

The scheduled arrival time is common to all flights on this route, while the arrival time of a flight is represented by a method
the compute its arrival time by

arrival Time -> at: var Ti meO Day:
at := departureTine + schedul edFl yi ngTi me

where schedul edFl yi ngTi e is the property of the enclosing Rout e object and therefore visible in Fl i ght).

If the flight is delayed, the method del ayDepart ur e of the actual Fl i ght object is called, with the new time as
parameter. In addition to setting Depar t ur eTi ne to represent the estimated departure time, del ayed is setto Tr ue.

In the event of cancellation, the method cancel is called.

At take off, depar t ur eTi e is set to the time of take off, hasTakenCOf f is set to Tr ue, and hasArri ved is set to Fal se.
While flying the attribute ar ri val Ti me is set based on weather condition and the landing condition of the destination
airport. It is therefore assumed that this is set based on real time information from the plane. At arrival, hasArri ved is set
to Tr ue and hasTakenOf f to Fal se. The actual delay is computed from the estimated arrival time (set while flying) and
the scheduled arrival time.

The following illustration shows how nesting is used to compute the delay. By nesting the Fl i ght class in the Rout e class,
the attributes of Rout e are directly visible in class Fl i ght . The method del ay (in class Fl i ght) may therefore compute
the delay of the flight by subtracting the schedul edar ri val Ti e (in the enclosing Rout e) from the local Fl i ght
property Arri val Ti me:

Page 1
© Copyright by Ole Lehrmann Madsen and Birger Mgller-Pedersen 2023.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Mgller-Pedersen

class Route(name, origin, destination: ref Stri
scheduledDepartureTime: var TimeUfDay

I _________
i —— \
- !
"li_-" '\
‘l-‘."‘ ‘
delay —> perlod' ver Time.Hours: -

Sk g, T e g e sl i —— B R—
I

period :=:arrlvalTlme|—|scheduledArr

+++

Status of flights are provided in two different ways, either given the origin/destination airport at a given date, or given the
name of the route, e.g. SK1926.

The method departureStatus defined below is called before take off of the flight:

class Flight(departurebDate: var Date):

departureStatus -> info: var
String:
-- this is called before the flight has taken off

info := ("Flight " + nane + " at: " + departureDate.asString)
i f departureDel ayed :then

info :=info + "Esti mted departure time: "+ estinmatedDepartureTine +

' expected arrival tine: " + (DepartureTine + flyingTine)
el se

info :=info + " On schedule: " +
F2S(schedul edDepartureTi me.t. magni t ude)

The next method is called after take off:
class Flight(departurebDate: var Date):

arrival Status -> info: var

String:
-- this is called when the flight has taken off
info := ("Flight " + nane + " at: " + departureDate.asString)
info :=info + "Departed at: "+ departureTinme if (not hasArrived) :then
info :=info + " expected at: " + arrival Tinme
el se
Page 2

© Copyright by Ole Lehrmann Madsen and Birger Mgller-Pedersen 2023.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Mgller-Pedersen

info :=info + " arrived at: " + Arrival Tine +

" del ayed: " + del ay
Based upon the entries in the time table, flight status is provided by:

showFl i ght St at us:
ti meTabl e. scanTi neTabl e
r: ref Route
r := current
r.scan
if (not hasTakenOrf) :then
current Fl i ght. departureStatus. print
el se
currentFlight.arrival Status. print
new i ne

This is based upon a scanTi neTabl e method:

ti meTabl e: obj
entries: obj OderlList(Route)
scanTi neTabl e:
current: ref Route
entries.scan
thi s(scanTi neTabl e).current := current
i nner (scanTi meTabl e)
| ookupRout e(routeld: var String) -> theRoute: ref
Rout e:
entries.scan
if (current.nanme = routeld):then
theRoute : = current
| eave(LookupRout e)

which in turn is based upon a scan of routes:

cl ass Route(nane, origin, destination: ref String):
-- as above
scan:
currentFlight: ref Flight
flights.scan
currentFlight := current
i nner (scan)

showFl i ght St at us:
ti meTabl e. scanTi neTabl e
r: ref Route
r := current
r.scan
if (not hasTakenOrf) :then
current Fl i ght. departureStatus. print
el se
currentFlight.arrival Status. print
new i ne

For the purpose of providing status of flights we have two ways to ask for that: flights departing or arriving from a given

airport at a given date, or flights of a given route at a given airport and date.

From/to a given airport, at a given date

The following method delivers the list of flights for giving the status of all flights with a given origin airport at a given date:

Page 3

© Copyright by Ole Lehrmann Madsen and Birger Mgller-Pedersen 2023.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Mgller-Pedersen

fromAirport(ap: var String, d: var Date)
-> flightList: ref OrderedList(Flight):
routeLi st: obj OrderedList(Route)
timeTabl e. entri es. scan
if (current.origin = ap :then
routelList.insert(current)
rout eSet . scan
current.flights.scan
if (current.date = d) :then
flightList.insert(current)

It is left as a simple exercise to make the method that delivers the list of flights for giving the status of all flights with a given
destination airport at a given date.

Svar:

t oAi rport(ap: var String, d: var Date)
-> flightList: ref OrderedList(Flight):
rout eLi st: obj OrderedList(Route)
timeTabl e. entri es. scan
if (current.destination = ap :then routelist.insert(current)
rout eLi st. scan

current.flights.scan
if (current.date = d) :then flightList.insert(current)

Before the list of FI i ght objects delivered by these two methods are used for producing the status website, the list
delivered by f r omAi r port should be sorted according to departure time (in fact scheduled departure time, as this should
be displayed together with the actual departure time), while the list of Fl i ght objects delivered by t 0Ai r port should be
sorted according to arrival time.

Given these two lists of FI i ght objects, the status website can produce the two strings delivered by the methods
departureStatus and arri val St at us.

fromAirport("OSL", Date(+++, +++, +++)).scan
current. departureStatus. print

fromAirport("OSL", Date(+++, +++)).scan
current.arrival Status. print

fromAirport ("ARR', Date(+++, +++, +++)).scan
current. departureStatus. print

fromAirport ("ARR', Date(+++, +++, +++)).scan
current.arrival Status. print

Given the Route name, airport, and a given date

The following method produces the list of flights given a certain route, from a given airport at a certain date:

onRout eNaneFrom(n: var String, from var String d: var Date)
-> flightList: ref OrderedList(Flight):
theRoute: ref Route
theRoute : = timeTabl e. | ookupRout e(n)
if theRoute.origin = from:then
theRout e. flights. scan
if (current.date = d) :then flightList.insert(current)

It is left as a simple exercise to make the method that produces the list of flights given a certain route, to a given airport at a
certain date:

Page 4
© Copyright by Ole Lehrmann Madsen and Birger Mgller-Pedersen 2023.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Mgller-Pedersen

onRout eNaneTo(n: var String, to: var String d: var Date)
-> flightList: ref OrderedList(Flight):
theRoute: ref Route
theRoute : = timeTabl e. | ookupRout e(n)
if theRoute.origin =to :then
theRoute.flights.scan
if (current.date = d) :then flightList.insert(current)

Given these two lists of FI i ght objects, the status website can produce the two strings delivered by the methods
departureStatus and arri val St at us.

onRout eNaneFr om(" SK1926", "ARR' Dat e(+++, +++, +++)).scan
current.departureStatus. print

onRout eNaneTo(" SK1926", "OSL" Date(+++, +++, +++)).scan
current.arrival Status. print

Page 5
© Copyright by Ole Lehrmann Madsen and Birger Mgller-Pedersen 2023.

