
17.3 Subject and Observer Aspects

Description

In this section, we introduce two related aspects, subject and observer, which have to be used in tandem. Objects of
classes with a subject aspect may be observed by a set of objects with an observer aspect. An observer object subscribes
to certain events in the subject object, events that typically change the state of the subject object. In a case of such an
event, the observer will be notified.

As a first example, we use a a fire alarm in a shopping center with a number of shops. The fire alarm may be considered a
subject to be observed by a number of stakeholders that include the fire department, the owner of the shopping center and
the shops in the center. As a second example, we show how to add subject and observer aspects to the bank system to
monitor suspicious transactions on the accounts of the bank.

Måske en illustration der viser subject/alarm og observers/FireDept, …? Og som en almindelig illustration – ikke et objekt-
diagram.

Before we show how to represent the examples, we introduce some general
classes for representing subjects and observers represented by Subject and
Observer. Objects being subject to observation shall have the properties of
Subject, and observer objects shall have the properties of Observer. The
structure and behaviour of class Observer and class Subject is known as the
Observer Design Pattern – we thus place the two classes in a module called ObserverPattern:

ObserverPattern: obj
class Subject:

 observers: obj Set(#Observer)
 subscribe(obs: ref Observer):
 observers.insert(obs)
 notifyObservers:
 observers.scan
 current.notify(this(Subject))
 inner(Subject)

class Observer:
class ObservedSubject:< Subject

 notify(theSubject: ref ObservedSubject):<
 inner(notify)

A Subject have a Set observers containing Observer objects.
It has a method subscribe that makes an Observer object an element of observers;
It has a method notifyObservers that is called in case the observeres should be notified about changes, so it will
for each observer in observers invoke its notify.
An Observer has a local virtual class ObservedSubject that can be extended with further attributes in subclasses
of the observed Subject.
It has a method notify, which has a parameter, theSubject of type ObservedSubject, which is a reference to
the Subject that invokes notify.

The figure below illustrates that a Subject has a set (observers) of references to a number of Observer objects; this is
illustrated with the ‘*’ in rightmost top of the Observer object. The figure also illustrate that when notify is invoked on
these Observer objects, the parameter theSubject of each notify method object is set to denote the Subject object
that invoked notify:

In programming a design pattern
describes a well-defined functionality of a
program in terms of how to structure a
program fragment implementing the
functionality. Observer is an example of a
design pattern.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 1
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

SubjectObserver

The dashed line indicates that each notify method object is an instance of the method notify of a given Observer object.

The classes Subject and Observer are rather abstract so in the next section we will show how the above example of a
fire alarm in a shopping center may be modeled using the ObserverPattern. We show how to add subject and observer
aspects to the bank system in the section following the next section.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 2
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

