
18.3.1 The alarm example

Description

The fire alarm is represented by an object of class Alarm, a
subclass of Subject. The fire department, center owner, and shops
are represented by instances of class Stakeholder which in turn is
a subclass of Observer.

class Alarm(id: var String): Subject
 whatWentWrong:
 " - smoke detected\n".print
 alert:
 notifyObservers

class Stakeholder(id: var String): Observer
 ObservedSubject::< Alarm
 notify::
 theSubject.whatWentWrong	
 fireAlarm.subscribe(this(StakeHolder))
 fireAlarm: obj Alarm("fireAlarm")
 fireDepartment: obj Stakeholder("FireDepartment")
 centerOwner: obj Stakeholder("CenterOwner")
 shopA: obj StakeHolder("ShopA")
 shopB: obj StakeHolder("ShopB")
 shopC: obj StakeHolder("ShopC")

Class Alarm has an id identifying the alarm.
It has a method whatWentWrong that may supply information to an Observer when notified.
It has a method alert that is invoked by a fire censor in case a fire is detected.
Class StakeHolder is a subclass of Observer.
It has an id identifying the Observer.
It makes further binding of notify, which invokes theSubject.whatWentWrong.
It makes a further binding of class ObservedSubject to Alarm.
Note that theSubject (the parameter of notify) is of type ObservedSubject, and since it is bound to Alarm,
the method whatWentWrong may be invoked.
It invokes fireAlarm.subscribe(this(StakeHolder)) and thereby subscribe to events from fireAlarm.
The object fireAlarm is declared as an instance of class Alarm.
The Observer objects FireDepartment, etc. are declared as instances of class Stakeholder.

The next diagram illustrates the situation where the subject fireAlarm has references to all the Observers, and the
argument, theSubject of invocations of notify on an Observer refers to the fireAlarm object.

In order to simplify this first example, we do not represent the
subject and observer aspects as aspects in the form of
objects as in the previous sections. We give an example of
this later in this section.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 1
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

SubjectObserver/

When the Stakeholder objects are generated, they all subscribe to events from the fireAlarm. At some point in time an
external sensor may detect a possible fire and invoke fireAlarm.alert, which then invokes notifyObservers, which
in turn invoke notify on all Stakeholder objects. This is illustrated by the following OSD.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 2
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

fireAlarmOSD/

The invocations of notify all invoke whatWentWong on the FireAlarm, but this is not shown in the above diagram.

In the above example, the FireAlarm is the only subject being observed. It is of course possible to add more FireAlarm
objects at different places in the shopping center or at other locations. The FireDepartment will then observe all the
FireAlarms whereas the shops and owner of a given shopping center only observe the alarm in that center.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 3
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

