OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Mgller-Pedersen

17.3.2 Representing the observer pattern as aspects
Description

The example in the previous section is meant for illustrating the observer pattern, but from a modeling point-of-view, it does
not make sense that f i r eAl ar mis a subclass of Subj ect and that Fi r eDepart nent , etc. are subclasses of Gbser ver .

In this section, we will show how the observer pattern may be represented as aspects. For this purpose, we will use the
bank system. A scenario that calls for adding subject/observer aspects to the bank system is the following: Every day the
bank checks if there has been some suspicious transactions on accounts, and in case, both a special alarm part of the bank
and the actual customer are notified of the event. This is done by giving each account a subject aspect and both alarm and
each customer an observer aspect.

Account objects have a subject aspect represented by the object asSubj ect , and Cust oner objects and the al ar m
object have an observer aspect represented by an object asCbser ver :

BankSysEx: obj
cl ass Account (owner: ref Custoner):

asSubj ect: obj Subject

cl ass Customer (id: var Integer):
:sls_Ooserver: obj Cbserver

al arm obj

asObserver: obj Observer

The subject and observer aspects are now represented as properties of part-objects of Account objects, Cust orrer
objects, and the al ar mobject. This is illustrated in the following figure, in the first round with the types of the part objects
being Subj ect and hser ver:

Page 1
© Copyright by Ole Lehrmann Madsen and Birger Mgller-Pedersen 2023.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Mgller-Pedersen

Recall that an object defined by obj is generated and executed as part of the generation of the object in which the object is.
So, each time an Account object is generated, the asSubj ect object is generated and executed, with the implication that
the al ar mand the owner are subscribed as observers of this account. Note that the parameters to the invocation of
subscri be are not references to al ar mor owner , but rather to their asCbser ver aspect objects.

As for the Fi r eal ar mexample, we also have to extend Cbser vedSubj ect to include information about the accounts.
The type of asSubj ect object cannot just be Subj ect, as it has to report events that has to do with Account -objects.
Since we have two types of observers, Cust onmer objects and the al ar m we introduce a class Account Subj ect being a
subclass of Subj ect , and we use the class as the type of asSubj ect :

cl ass Account Subj ect (whi chAccount: ref Account): Subject
i ssueWt hTransacti ons:
"There is an issue with the account of: ".print
whi chAccount . owner. pri nt
i nner (Account Subj ect)

class Account (owner: ref Custoner):
asSubj ect: obj Account Subject (thi s(Account))
In a similar way, the asCbser ver objects of Cust oner and al ar mare defined as subclasses of Chser ver:

cl ass Custoner(nane: var String):
asobserver: obj Cbserver
cl ass ObservedSubj ect:: Account Subj ect
notify::
t heSubj ect . i ssueWt hTransacti ons
al arm obj
asCObserver: obj Qoserver
cl ass ObservedSubject:: Account Subj ect
notify::
t heSubj ect. i ssueWt hTransacti ons

Page 2
© Copyright by Ole Lehrmann Madsen and Birger Mgller-Pedersen 2023.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Mgller-Pedersen

alarm:
asObserver:
4 : Observer
>
P o
/ =
7
—>»{ :Account P
a3 :notify
owner -
asSubject: theSubject
™ AccountSubigc{ * |
observers .
whichAccount S
e ‘LU
~ name

~._ | asObserver:
™ : observer

»
:notify

theSubject

Next we show how Cust orrer objects and al ar mmay subscribe to events in Account objects. This is done in a method
newAccount in BankSysEx:

newAccount (owner :

acc
acc

. ref Account

: = Account (owner)

ref Customer):

t heAccount sFil e.insert (acc)
acc. asSubj ect . subscri be(owner. asCbserver)
acc. asSubj ect . subscri be(al arm

The method newAccount creates a new Account for the Cust oner referred to by owner .

e First a new Account object is generated and a reference to it is assigned to acc.

o Next this reference is inserted in the t heAccount sFi | e, which is the set of accounts of Bank Sy sEXx.

e Then the owner aspect (owner . asQoser ver) of the new Account is subscribed to the subject aspect of acc (
acc. asSubj ect).

e Finally the al ar msubscribes to the subject aspect of acc.

Skal der veere en figur her?

To sum up, the overall structure of Bank SysEx is:

Bank SysEx:
cl ass Account Subj ect (whi chAccount: ref Account): Subject

obj

cl ass Account (owner: ref Custoner):

cl ass Custoner(id:

asSubj ect :

obj

var

Account Subj ect

I nteger):

Page 3

© Copyright by Ole Lehrmann Madsen and Birger Mgller-Pedersen 2023.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Mgller-Pedersen

asCbserver: obj Cbserver
ObservedSubj ect:: Account Subj ect

al arm obj
asChserver: obj Cbserver
onservedSubj ect:: Account Subj ect
newAccount (owner: ref Custoner):

accountsFile: obj OrderedList(Account)

Page 4
© Copyright by Ole Lehrmann Madsen and Birger Mgller-Pedersen 2023.

