
2.8 The second program

Description

In this section, we show how to represent activities of a clerk in the bank system. We may do this by introducing an object
representing a clerk. In the example, the clerk makes a few transactions on the account_1010:

aClerk: obj
 handle:
 newBalance: var float
 account_1010.interestRate := 0.7
 newBalance := account_1010.deposit(100)
 newBalance := account_1010.deposit(225)
 account_1010.addInterest
 newBalance := account_1010.withdraw(111)
 console.print("The new balance is:" + newBalance)

The activities of a clerk is modelled by a method, handle, of the aClerk object. The description of the method handle
consists of the following items:

1. A declaration of a local variable newBalance.
2. An assignment statement account_1010.interestRate := 0.7.
3. Two invocations of the deposit method on account_1010, with arguments 100 and 225.

The balance is now 325
4. An invocation of the addInterest method on account_1010.

The balance is now 325 + 325 * 0.7% = 327,28
5. An invocation of withdraw on account_1010 with argument 111.

The balance is now 216,28
6. And finally a statement printing the new balance of the account.

As mentioned, objects exist within a computer, and the bank clerks need to be able to manipulate the objects. In order to do
this, a given object model must be able to receive information from outside the computer and to deliver information to the
outside. This is called input and output (abbreviated I/O) to and from an object model.

As a simple start on handling I/O, we assume that our system has an object console that represents a window on the
screen of the computer executing the bank system. The console objects has a method print for printing strings and
numbers in the associated window.

The clerk executes the following statment as part of handle:

console.print("The new balance is: " + newBalance)

The argument, "The new balance is: " + balance of print evaluates
to the string "The new balance is: 216.28" and this string is printed in the
window.

Next we show how to make a program containing aClerk and account_1010 in the form of a program
mySecondProgram. In addition mySecondProgram contains a statement aClerk.handle.

mySecondProgram: obj aClerk: obj
 handle:
 -"-
 account_1010: obj
 -"-
 aClerk.handle

The operator + concatenates two strings. An
expression "Hello " + "world" evaluates to
the String "Hello World". An operator of
type float like newBalance will be
transformed to a String representing its value.
For details see .

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 1
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

Notation: we use -"- to stand for code that is not shown, but has been shown in a previous example. One may think of this
symbol as an extended ditto mark. See chapter .

The description of mySecondProgram is an example of a program that may be executed – it has the following items:

A declaration of the object aClerk.
A declaration of the object account_1010.
A statement aClerk.handle.

When this program is executed, the object mySecondProgram is generated; as part of this generation the two objects
aClerk and account_1010 are generated, and finally there is an invocation of aClerk.handle.

The following snapshots illustrate the dynamics of the execution of this program.

The first snapshot shows the state of account_1010 after mySecondProgram, aClerk and account_1010 have been
generated, and the statement aCleark.handle is being executed:

A handle method object has been generated.
The point of execution is before the statement account_1010 := 0.7 in handle.
As can be seen, interestRate = 0.7 and balance = 0.

mySecondProgram: obj aClerk: obj
 handle:
 newBalance: var float
--> account_1010.interestRate := 0.7
 newBalance := account_1010.deposit(100)
 newBalance := account_1010.deposit(225)
 account_1010.addInterest
 newBalance := account_1010.withdraw(111)
 console.print("The new balance is:" + newBalance)
 account_1010: obj
 -"-
 aClerk.handle

The next snapshot shows the situation after handle has executed account_1010.interestRate := 0.7 and the
statement newBalance := account_1010.deposit(100) is being executed.

The point of execution is at the statement balance := balance + amount) in deposit.
So far we still have balance = 0.

mySecondProgram: obj aClerk: obj
 -"-
 account_1010: obj
 -"-
 deposit(amount: var float):
--> balance := balance + amount

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 2
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

 aClerk.handle

The next snapshot shows the situation after execution of deposit has returned.

The point of execution is at the statement account_1010.deposit(225) in handle.
As can bee seen, balance now has the value 100.

mySecondProgram: obj aClerk: obj
 handle:
 newBalance: var float
 account_1010.interestRate := 0.7

 newBalance := account_1010.deposit(100)
--> newBalance := account_1010.deposit(225)

 account_1010.addInterest
 newBalance := account_1010.withdraw(111)
 console.print("The new balance is:" + newBalance)
 account_1010: obj
 -"-
 aClerk.handle

The final snapshot shows the situation just be fore the statement console.print("...") in handle.

As can be seen, the value of a balance is now 216.27.

mySecondProgram: obj aClerk: obj
 handle:
 newBalance: var float
 account_1010.interestRate := 0.7

 newBalance := account_1010.deposit(100)
 newBalance := account_1010.deposit(225)

 account_1010.addInterest
 newBalance := account_1010.withdraw(111)
--> console.print("The new balance is:" + newBalance)
 account_1010: obj
 -"-
 aClerk.handle

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 3
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

The above clerk object is only for an illustrative purpose and a does not represent a real clerk in a bank system. We
elaborate on the example later in this book.

Terminology: singular object

In this chapter, we have described three objects, account_1010, aClerk, and mySecondProgram. They are all
examples of what is called a singular object since there is only one of its kind for each of them. In the next section, we
introduce the class mechanism, which is a template that may be used to generate many objects that have the structure as
defined by the template.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Møller-Pedersen

Page 4
© Copyright by Ole Lehrmann Madsen and Birger Møller-Pedersen 2023.

