OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Mgller-Pedersen

5.1 Reference data-items
Description

In this section, we further describe data-items holding references to objects.

We have in previous sections like seen declarations of the form:
JohnSmithProfile: obj Customer("John Smith")

This declaration implies the generation of an instance of the Cust orer class with "John Sni t h" as the actual parameter.
The data-item JohnSni t hPr of i | e is a constant reference that refers to this object during the life-time of the program
execution.

We have also seen examples of declarations of the form:
aCustomrer: ref Custoner

The data-item aCust oner is a reference variable that may refer to different Cust oner objects during the life-time of the
program execution. Initially it holds the reference none, which means that it refers to no object.

We have also seen examples of assignment of references that has the effect that two or more references may refer to the
same object.

In the next sections, we describe reference assignment in details. We also describe comparisons of references, parameter
transfer of references and the type rules for reference assignment and comparison.

Reference assignment

Here we will summarise assignment of references in general. We use class Cust oner for the example and we use the
following ghost object because in a program for a real bank there would be no object with the description below:

aGhost: obj
JohnSmit hProfile: obj Custoner("John Snith")
Li zaJonesProfile: obj Custoner("Liza Jones")
customer A, customerB: ref Custoner

custonerA := JohnSmthProfile
custonerB : = Li zaJonesProfile
custoner A : = custonerB

Figure 5.1.1 Customer references

In the above example, we have two Cust oner objects JohnSni t hProfil e and Li zaJonesPr of i | e, and two reference
variables cust omer A and cust oner B. The following snaphots illustrates the effect of reference assignments.

The first snapshot shows the situation after generation of aCl er k — marked by the red arrow (—>). Here
JohnSmi t hsProfi | e refers to Cust oner ("John Smith") and Li zaJonesProf i | e refers to Cust oner ("Li za
Jones") . The reference variable cust ormer A and cust oner B are both none:

aCGhost: obj
JohnSmithProfile: obj Custoner("John Snith")
Li zaJonesProfile: obj Custoner("Liza Jones")
customer A, custonerB: ref Custoner
--> custonerA := JohnSm thProfile

Page 1
© Copyright by Ole Lehrmann Madsen and Birger Mgller-Pedersen 2023.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Mgller-Pedersen

customerB :
customer A .

Snapshot A

Li zaJonesProfil e
customerB

Rage not fgdihd or type unknown

The next snapshot shows the situation after the assignment cust oner B : = Li zaJonesPr of i | e. As can be seen,
cust omer Band Li zaJonesPr of i | e now both refer to the same object:

aCGhost: obj

JohnSmithProfile: obj Custoner("John Snith")
Li zaJonesProfile: obj Custoner("Liza Jones")
custonmer B: ref Custoner

cust omrer A,
customer A :
custonerB :
--> customerA :

Snapshot B

JohnSm thProfil e
Li zaJonesProfil e
custoner B

Rage not fgaihd or type unknown

The final snapshot shows the situation after execution of cust omer A : = cust omer B. As can be seen, cust oner Aand
cust oner B now both refer to Li zaJonesProfi | e.

aCGhost: obj

JohnSmithProfile: obj Custoner("John Snith")
Li zaJonesProfile: obj Custoner("Liza Jones")
customer A, custonerB: ref Custoner

customer A
customerB :
customerA :

Snapshot C

JohnSm thProfil e
Li zaJonesProfil e
custoner B

RQage not fgdihd or type unknown

Reference comparison

We may also compare references using = (equality) and <> (inequality):

If E1 and E2 are expressions that evaluates to references R1 and R2, then the expression E1 = E2 is true if and only if R1
and R2 refer to the same object. If R1 and R2 refer to different objects then E1 = E2 evaluates to false.

Page 2

© Copyright by Ole Lehrmann Madsen and Birger Mgller-Pedersen 2023.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Mgller-Pedersen

Similarly the expression E1 <> E2 is true if and only if R1 and R2 does not refer to the same object. If R1 and R2 refer to
the same object then E1 = E2 evaluates to false.

Below, we show the value of some reference expressions using = (equality) and <> (inequality) at Snapshot B and
Snapshot C above.

For the situation at Snapshot B above, we have the following:

JohnSmithProfile = LizaSmthProfile -- false, they refer to different objects
JohnSmithProfile <> LizaSmthProfile -- true, they refer to the same object
JohnSmthProfile = custonerA -- true, they refer to the same object
JohnSmithProfil e <> customerB -- false, they refer to different objects

The first comment - - fal se, they refer to different objects ismeantto say thatthe expression
JohnSmithProfile = LizaSm t hProfil e evaluates to the value f al se.

The situation at Snapshot C after the assignment cust oner A : = cust oner Bis as follows:
JohnSmithProfile = custonerA -- false

custoner A = custonerB -- true

Li zaJonesProfile = customerA -- true

Assignment between data items being references is called reference assignment and comparison of references is called
reference comparison.

Reference assignment and reference comparison is fundamentally different from assignment between data items
representing values.

The wi t hdr aw method has a statement:

newB : = bal ance

Here the value hold by bal ance is copied to newB, which then holds the same value as bal ance. The data items newB
and bal ance are not references to some objects. As we shall se in section X, they are a special kind of objects called
value objects that may represent values — in section , we describe value assignment and value comparison.

Reference parameter passing

Passing a parameter as part of a method invocation or class invocation is similar to assignment in the sense that the actual
parameter is assigned to the formal parameter of the method or class respectively.

Consider the following example:
account _1010: obj Account(JohnSm thsProfile)

Here an instance of Account is generated with JohnSmi t hsPr of i | e as the actual parameter. First an instance of
Account is generated and then JohnSmi t hsPr of i | e is assigned to the owner reference variable of this Account
object. This may be illustrated by the following code sketch:

anAccount: ref Account

anAccount : = Account -- generate the/an Account object
anAccount . owner : = JohnSmithsProfile

account 1010 : = anAccount

Note that, the statement anAccount : = Account is only for illustrative purposes — it is not possible to write this
statement in gBeta, since an actual parameter must be supplied when Account has a parameter (here owner)

. +++ Vi skal arbejde med formuleringen her — generate omfatter normal ogsa parameter overfarsel s maske et andet ord
her?

Page 3
© Copyright by Ole Lehrmann Madsen and Birger Mgller-Pedersen 2023.

OBJECT-ORIENTED PROGRAMMING AS MODELING
O.L. Madsen & B. Mgller-Pedersen

Type rule for reference assignment and comparison

As shown above, we may assign a reference to a Cust orrer object to a reference variable that has the type Cust oner . It
is not possible to assign a reference to an Account object to the reference variable aCust oner .

In general the type of an expression in an assignment must be the same as the type of the reference variable being
assigned to. This is also the case for passing an expression as an argument to a parameter of a method being a reference.

The above rule does also apply to comparisons using = (equality) and <> (inequality) where both arguments must be of the
same type

Consider the following example:
aCust ormer A, aCustomerB: ref Custoner

anAccount A, anAccount B: ref Account
B: var Bool ean

aCustomer A : = Customer("John Snmith") -- | egal

anAccount A : = Account (aCust oner A) -- legal

aCustomer A : = anAccount A -- illegal

anAccount B : = Account (anAccount A) -- illegal

B : = aCustoner A = aCustonerB -- |l egal

B : = aCustonmer A <> anAccount A -- illegal

The assignment anAccount B : = Account (anAccount A) is illegal since the owner parameter of Account is of type

Cust omrer whereas the argument anAccount A is of type Account .

The purpose of the type rule is two fold: from a programming and modeling point of view it does not make sense to allow
assignments like aCust onmer A : = anAccount A

Secondly the type rule is necessary to prevent errors at run-time. Assume that we allow the assignment then we may write
code as

aCustomer A : = anAccount A
aCust omer A. addAccount (JohnSmi t hProfil e)

This does not makes sense since an Account object does not have an addAccount method.

In chapter , we extend the type rule for assignment, parameter transfer and comparison.

Page 4
© Copyright by Ole Lehrmann Madsen and Birger Mgller-Pedersen 2023.

